精英家教网 > 高中数学 > 题目详情
5.设原命题是“等边三角形的三内角相等”,把原命题写成“若p,则q”的形式,并写出它的逆命题,否命题和逆否命题,然后指出它们的真假.

分析 将原命题的条件与结论互换,可得逆命题;将原命题的条件否定,结论也否定,得到否命题;再找到否命题的逆命题即为原命题的逆否命题.根据这个理论,再分析出原命题的条件p:一个三角形是等边三角形,结论q:这个三角形三内角相等,就不难写出正确答案.

解答 解:若p则q:若一个三角形是等边三角形,则它的三内角相等.    ( 真  )
逆命题:若一个三角形的三内角相等,则它是等边三角形.         ( 真  )
否命题:若一个三角形是等边三角形,则它的三内角不相等.     ( 真  )
逆否命题:若一个三角形的三内角不全相等,则它不是等边三角形.   ( 真  )

点评 本题考查了复合命题的条件与结论的分析,以及四种命题及其相互关系,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

3.直线l1、l2的方向向量分别为$\vec a=(1,-3,-1)$,$\vec b=(8,2,2)$,则(  )
A.l1⊥l2B.l1∥l2
C.l1与l2相交不平行D.l1与l2重合

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.在两坐标轴上截距均为m(m∈R)的直线l1与直线l2:2x+2y-3=0的距离为$\sqrt{2}$,则m=(  )
A.$\frac{7}{2}$B.7C.-$\frac{1}{2}$或$\frac{7}{2}$D.-1或7

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.若等差数列{an}的前7项和为48,前14项和为72,则它的前21项和为(  )
A.96B.72C.60D.48

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.在长方体ABCD-A1B1C1D1中,B1C和C1D与底面所成的角分别为60°和45°,则异面直线B1C和C1D所成角的正弦值为(  )
A.$\frac{\sqrt{2}}{4}$B.$\frac{\sqrt{2}}{2}$C.$\frac{{\sqrt{10}}}{4}$D.$\frac{{\sqrt{6}}}{4}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.如果有穷数列{an}满足条件:a1=an,a2=an-1,…,an=a1,即ai=an-i+1,我们称其为“对称数列”,例如数列1,2,3,4,3,2,1和1,2,3,4,4,3,2,1都是“对称数列”.已知数列{bn}是项数不超过2m(m>1,m∈N*)的“对称数列”,并使得1,2,22,23,…,2m-1依次为该数列中连续的前m项.则数列{bn}的前2015项和S2015可以是:
①22015-1;     
②22015-2;
③3•2m-1-22m-2016-1;
④3•2m-22m-2016-1;
⑤2m+1-22m-2015-1.
其中正确结论的序号为①③⑤.(请写出所有正确结论的序号)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.已知定义在实数集R上的函数f(x)满足下列三个条件
①对任意的x∈R,都有f(x+4)=f(x).
②对于任意的x1,x2∈[0,2],x1<x2,都有f(x1)<f(x2).
③函数f(x+2)的图象关于y轴对称.则下列结论中,正确的是(  )
A.f(4.5)<f(6.5)<f(7)B.f(4.5)<f(7)<f(6.5)C.f(7)<f(6.5)<f(4.5)D.f(7)<f(4.5)<f(6.5)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.${∫}_{0}^{2π}$|sinx|dx等于4.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.计算:
(1)$\root{4}{{(3-π{)^4}}}$+(0.008)${\;}^{\frac{1}{3}}$-(0.25)${\;}^{\frac{1}{2}}$×($\frac{1}{{\sqrt{2}}}$)-4
(2)($\root{3}{2}$×$\sqrt{3}$)6+($\sqrt{2\sqrt{2}}$)${\;}^{\frac{4}{3}}$-4($\frac{16}{49}$)${\;}^{-\frac{1}{2}}$-$\root{4}{2}$×80.25-(-2009)0

查看答案和解析>>

同步练习册答案