精英家教网 > 高中数学 > 题目详情
3、已知函数f(x),对任意实数x、y,都有f(x+y)=f(x)+f(y),试判别f(x)的奇偶性
奇函数
分析:判断f(x)奇偶性,即找出f(-x)与f(x)之间的关系,令y=-x,有f(0)=f(x)+f(-x),故问题转化为求f(0)即可,可对x、y都赋值为0即可求出f(0).
解答:解:显然f(x)的定义域是R,关于原点对称.
又∵函数对一切x、y都有f(x+y)=f(x)+f(y),
∴令x=y=0,得f(0)=2f(0),∴f(0)=0.
再令y=-x,得f(0)=f(x)+f(-x),
∴f(-x)=-f(x),
∴f(x)为奇函数.
故答案为:奇函数.
点评:本题考点是抽象函数及其性质,在研究其奇偶性时本题采取了连续赋值的技巧,这是判断抽象函数性质时常用的一种探究的方式,属于基础题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知函数f(x)满足对任意实数x,y都有f(x+y)=f(x)+f(y)+1成立,且当x>0时,f(x)>-1,f(1)=0.
(1)求f(5)的值;
(2)判断f(x)在R上的单调性,并证明;
(3)若对于任意给定的正实数ε,总能找到一个正实数σ,使得当|x-x0|<σ时,|f(x)-f(x0)|<ε,则称函数f(x)在x=x0处连续.试证明:f(x)在x=0处连续.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)满足对一切x1,x2∈R都有f(x1+x2)=f(x1)+f(x2)-2,且f(1)=0,当x>1时有f(x)<0.
(1)求f(-1)的值;
(2)判断并证明函数f(x)在R上的单调性;
(3)解不等式:[f(x2-2x)]2+2f(x2-2x-1)-12<0.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x),对任意的实数x满足f(x-2)=f(x+2),且当x∈[-1,3)时,f(x)=
2-|x|,(-1≤x≤1)
k
-x2+4x-3
,(1<x<3)
,若直线y=
1
4
x
与函数f(x)的图象有3个公共点,则实数k的取值范围为
-
35
4
<k<-
3
4
3
4
<k<
35
4
-
35
4
<k<-
3
4
3
4
<k<
35
4

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)满足对任意的x,y∈R,都有f(x+y)=f(x)+f(y)且在区间[3,7]上是增函数,在区间[4,6]上的最大值为1007,最小值为-2,则2f(-6)+f(-4)=(  )

查看答案和解析>>

同步练习册答案