精英家教网 > 高中数学 > 题目详情

若奇函数y=f(x)(x≠0),当x∈(0,+∞)时,f(x)=x-1,则不等式f(x-1)<0的解为________.

(-∞,0)∪(1,2)
分析:由函数f(x)为奇函数,得到f(-x)=-f(x),设x小于0,则-x大于0,代入已知的解析式,化简可求出x小于0时函数的解析式,分x-1大于0及x-1小于0两种情况,求出相应f(x-1)的解析式,代入所求不等式,求出两解集的并集即可得到原不等式的解集.
解答:∵函数y=f(x)为奇函数,当x>0时,f(x)=x-1,
∴x<0时,-x>0,f(-x)=-f(x)=-x-1,即f(x)=x+1,
当x-1>0,即x>1时,f(x-1)=x-2,
原不等式化为x-2<0,解得x<2,
此时原不等式的解集为(1,2);
当x-1<0,即x<1时,f(x-1)=x,
原不等式化为x<0,
此时原不等式的解集为(-∞,0),
综上,原不等式的解集为(-∞,0)∪(1,2).
故答案为:(-∞,0)∪(1,2)
点评:此题考查了其他不等式的解法,涉及的知识有:奇函数的性质,函数的值,以及不等式的解法,利用了转化及分类讨论的思想,是高考中常考的题型.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

16、给出下列4个命题:
①若一个函数的图象与其反函数的图象有交点,则交点一定在直线y=x上;
②函数y=f(1-x)的图象与函数y=f(1+x)的图象关于直线x=1对称;
③若奇函数y=f(x)的图象关于直线x=a对称,则y=f(x)的周期为2a;
④已知集合A={1,2,3},B={4,5},则以A为定义域,以B为值域的函数有8个.
在上述四个命题中,所有不正确命题的序号是
①②③④

查看答案和解析>>

科目:高中数学 来源: 题型:

若奇函数y=f(x)(x≠0)当x∈(0,+∞)时,f(x)=x-1,则不等式f(x-1)<0的解集是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

若奇函数y=f(x)(x≠0),当x∈(0,+∞)时,f(x)=x-1,则不等式f(x)<0的解集是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

若奇函数y=f(x)在R上单调递增,且f(m2)>-f(m),求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

若奇函数y=f(x)(x≠0),在x>0时,f(x)=x-1,则x•f(x-1)<0的x的取值范围是(  )

查看答案和解析>>

同步练习册答案