精英家教网 > 高中数学 > 题目详情

已知偶函数f(x)对?x∈R满足f(2+x)=f(2-x)且当-2≤x≤0时,f(x)=log2(1-x),则f(2011)的值为


  1. A.
    2011
  2. B.
    2
  3. C.
    1
  4. D.
    0
C
分析:由f(2+x)=f(2-x),知f(x)=f(4-x),由f(x)是偶函数,知f(x)=f(4-x)=f(-x),所以f(x)周期是4.由f(x)=log2(1-x),能求出f(2011)的值.
解答:∵f(2+x)=f(2-x),
∴f(x)=f(4-x)
∵f(x)是偶函数,
∴f(x)=f(4-x)=f(-x)
所以f(x)周期是4.
∴f(2011)=f(-1),
当-2≤x≤0时,f(x)=log2(1-x),
代入-1即可答案为log22=1.
故选C.
点评:本题考查函数的性质的应用,是基础题.解题时要认真审题,注意对数函数性质的灵活运用.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知偶函数f(x)对?x∈R满足f(2+x)=f(2-x),且当-2≤x≤0时,f(x)=log2(1-x),则f(2013)的值为(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

已知偶函数f(x)对?x∈R满足f(2+x)=f(2-x),且当-2≤x≤0时,f(x)=log2(1-x),则f(2003)的值为(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

已知偶函数f(x)对任意x均满足f(3+x)+f(-1-x)=6,且当x∈[1,2]时,f(x)=x+2.若关于x的方程f(x)-loga(x+2)=2有五个不相等的实数根,则实数a的取值范围为(  )
A、(1,2)
B、(2,2
3
)
C、(2,2
2
)
D、(2
2
,2
3
)

查看答案和解析>>

科目:高中数学 来源: 题型:

已知偶函数f(x)对?x∈R,都有f(x-2)=-f(x),且当x∈[-1,0]时,f(x)=-
1
2
x,则f(2013)=(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

已知偶函数f(x)对任意x∈R满足f(2+x)=f(2-x),且当-2≤x≤0时,f(x)=log2(1-x),则f(2013)的值为
 

查看答案和解析>>

同步练习册答案