精英家教网 > 高中数学 > 题目详情
14.求证:三角形的外心,重心,垂心在同一直线上.

分析 从三角形重心的唯一性入手,证明HO与中线BE的交点与重心G重合.

解答 证明:连接中位线DE(如图).则DE∥AB,
又∵AH∥OD,BH∥OE(BH、OE同垂直于AC).
故△DEO∽△ABH,
从而OE:HB=DE:AB=1:2.
连接OH交中线BE于G′.
∵BH∥OE,
∴△OEG′∽△HBG′.
因此,EG′:BG′=OE:HB=1:2.
这说明G′点即为△ABC的重心G.
从而H、G、O三点共线.

点评 此题主要考查了三角形中线的性质,以及三角形相似的性质,有一定综合性.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

4.对于命题:若O是线段AB上一点,则有|$\overrightarrow{OB}$|•$\overrightarrow{OA}$+|$\overrightarrow{OA}$|•$\overrightarrow{OB}$=$\overrightarrow{0}$.将它类比到平面的情形是:若O是△ABC内一点,则有S△OBC•$\overrightarrow{OA}$+S△OCA•$\overrightarrow{OB}$+S△OBA•$\overrightarrow{OC}$=$\overrightarrow{0}$,将它类比到空间情形应该是:若O是四面体ABCD内一点,则有VO-BCD•$\overrightarrow{OA}$+VO-ACD•$\overrightarrow{OB}$+VO-ABD•$\overrightarrow{OC}$+VO-ABC•$\overrightarrow{OD}$=$\overrightarrow{0}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.若集合A={x|$\sqrt{{x}^{2}-3}$=ax+1,x∈R}为空集,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.解不等式:||x|-|x-4||>2.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.已知sin(∂+θ)=$\frac{1}{2}$,sin(∂-θ)=$\frac{1}{3}$.证明:tan∂=5tanθ.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.如图,球O中有一内接圆柱,当圆柱的体积最大时,圆柱的侧面积为16$\sqrt{2}$π,则球O的体积为32$\sqrt{3}$π

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.函数y=sinα(sinα-cosα)(α∈[-$\frac{π}{2}$,0])的最大值为$\frac{1+\sqrt{2}}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.阅读如图所示的程序框图,回答下面的问题:
(1)图框①中x=4的含义是什么?
(2)图框②中y1=x3+2x+3的含义是什么?
(3)图框④中y2=x3+2x+3的含义是什么?
(4)输出的y1和y2的值各为多少?

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.已知实数x、y、z不全为零,求证:$\sqrt{{x}^{2}+xy+{y}^{2}}$+$\sqrt{{y}^{2}+yz+{z}^{2}}$+$\sqrt{{z}^{2}+zx+{x}^{2}}$>$\frac{3}{2}$(x+y+z).

查看答案和解析>>

同步练习册答案