精英家教网 > 高中数学 > 题目详情

名男生和名女生中任选人参加演讲比赛,
①求所选人都是男生的概率;
②求所选人恰有名女生的概率;
③求所选人中至少有名女生的概率。

(1);(2);(3)

解析试题分析:(1)首先列出所有的情况,所有的选法共有20 种,其中,所选3人都是男生的选法有4种,由此求得所选3人都是男生的概率.(2)所选3人恰有1名女生的选法有12 种,所有的选法共有,由此可得所选3人恰有1名女生的概率.(3)方法一:用A表示所选3人均为男生,则表示所选人中至少有名女生,所以根据对立事件的和为1,即可求出答案; 方法二:用B表示恰有1名女生,用C表示两名女生均当选,则B+C表示所选人中至少有名女生,由于事件B与C互斥,且P(B)=  ,P(C)=
所以P(B+C)=P(B)+P(C)即可求出答案.
解:从4男2女中任选3人,用无序数对(x,y,z)表示如下:其中1,2,3,4为男,5,6为女
(1,2,3),(1,2,4),(1,2,5),(1,2,6),(1,3,4),(1,3,5),(1,3,6),(1,4,5),
(1,4,6),(1,5,6),(2,3,4),(2,3,5),(2,3,6),(2,4,5),(2,4,6),(2,5,6),(3,4,5),
(3,4,6),(3,5,6),(4,5,6)共20种结果,每种出现的可能性相同,故试验属古典概型。
(1)用A表示所选3人均为男生,则事件A包含的基本事件有4个,则P(A)= ;
(2)用B表示恰有1名女生,则事件B包含的基本事件有12个,则P(B)=;
(3)方法一:用A表示所选3人均为男生,则表示所选人中至少有名女生,
所以P()=1-P(A)=1-=;
方法二:用C表示两名女生均当选,则B+C表示所选人中至少有名女生,
由于事件B与C互斥,且P(B)=  ,P(C)=
所以P(B+C)="P(B)+P(C)="
综上可知:(1)所选3人均为男生的概率为
(2)所选3人中恰有1名女生的概率为
(3)所选人中至少有名女生的概率为
考点:古典概型及其概率计算公式.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

某学校高一年级组建了A、B、C、D四个不同的“研究性学习”小组,要求高一年级学生必须参加,
且只能参加一个小组的活动.假定某班的甲、乙、丙三名同学对这四个小组的选择是等可能的.
(1)求甲、乙、丙三名同学选择四个小组的所有选法种数;
(2)求甲、乙、丙三名同学中至少有二人参加同一组活动的概率;
(3)设随机变量X为甲、乙、丙三名同学参加A小组活动的人数,求X的分布列与数学期望EX.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

某公司为招聘新员工设计了一个面试方案:应聘者从道备选题中一次性随机抽取道题,按照题目要求独立完成.规定:至少正确完成其中道题的便可通过.已知道备选题中应聘者甲有道题能正确完成,道题不能完成;应聘者乙每题正确完成的概率都是,且每题正确完成与否互不影响.
(1)分别求甲、乙两人正确完成面试题数的分布列,并计算其数学期望;
(2)请分析比较甲、乙两人谁的面试通过的可能性大?

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

某超市在节日期间进行有奖促销,凡在该超市购物满200元的顾客,将获得一次摸奖机会,规则如下:
奖盒中放有除颜色外完全相同的1个红色球,1个黄色球,1个蓝色球和1个黑色球.顾客不放回的每次摸出1个球,直至摸到黑色球停止摸奖.规定摸到红色球奖励10元,摸到黄色球或蓝色球奖励5元,摸到黑色球无奖励.
(1)求一名顾客摸球3次停止摸奖的概率;
(2)记X为一名顾客摸奖获得的奖金数额,求随机变量X的分布列和数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

在平面直角坐标系xOy中,平面区域W中的点的坐标(x,y)满足从区域W中随机取点M(x,y).
(1)若x∈Z,y∈Z,求点M位于第一象限的概率.
(2)若x∈R,y∈R,求|OM|≤2的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

近年空气质量逐步恶化,雾霾天气现象出现增多,大气污染危害加重,大气污染可引起心悸、呼吸困难等心肺疾病.为了解某市心肺疾病是否与性别有关,在某医院随机对入院的50人进行了问卷调查得到了如下的列联表:

 
患心肺疾病
不患心肺疾病
合计

 
5
 

10
 
 
合计
 
 
50
 
已知在全部50人中随机抽取1人,抽到患心肺疾病的人的概率为.
(1)请将上面的列联表补充完整;
(2)是否有99.5%的把握认为患心肺疾病与性别有关?说明你的理由;
临界值表供参考:
P(K2≥k)
0.15
0.10
0.05
0.025
0.010
0.005
0.001
k
2.072
2.706
3.841
5.024
6.635
7.879
10.828
 
参考公式:其中

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

现有4个人去参加某娱乐活动,该活动有甲、乙两个游戏可供参加者选择,为增加趣味性,约定:每个人通过掷一枚质地均匀的骰子决定自己去参加哪个游戏,掷出点数为1或2的人去参加甲游戏,掷出点数大于2的人去参加乙游戏.
(1)求这4个人中恰有2人去参加甲游戏的概率;
(2)求这4个人中去参加甲游戏的人数大于去参加乙游戏的人数的概率;
(3)用X,Y分别表示这4个人中去参加甲、乙游戏的人数,记ξ=|X Y|,求随机变量ξ的分布列与数学期望Eξ.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

下图是某市3月1日至14日空气质量指数趋势图,空气质量指数小于1 00表示空气质量优良,空气质量指数大于200表示空气重度污染,某人随机选择3月1曰至3月1 3日中某一天到达该市,并停留2天.

(l)求此人到达当日空气重度污染的概率;
(2)设X是此人停留期间空气质量优良的天数,求X的分布列与数学期望。

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

有一批数量很大的环形灯管,其次品率为20%,对这批产品进行抽查,每次抽出一件,如果抽出次品,则抽查中止,否则继续抽查,直到抽出次品,但抽查次数最多不超过5次.求抽查次数ξ的分布列.

查看答案和解析>>

同步练习册答案