精英家教网 > 高中数学 > 题目详情

下图是某市3月1日至14日空气质量指数趋势图,空气质量指数小于1 00表示空气质量优良,空气质量指数大于200表示空气重度污染,某人随机选择3月1曰至3月1 3日中某一天到达该市,并停留2天.

(l)求此人到达当日空气重度污染的概率;
(2)设X是此人停留期间空气质量优良的天数,求X的分布列与数学期望。

(1);(2)

解析试题分析:(1)某人随机选择3月1曰至3月1 3日中某一天到达该市,有13个基本事件,由于是随机选择,每个结果出现的可能性是相等等的,而到达当天空气重度污染包含两个基本事件,故可由古典概型求其概率;
(2)此人在选择3月1曰至3月1 3日中某一天到达该市,并停留2天,有13个基本事件,它们是
其中两天全是优良的有:共四个;;
两天中只有一个优良的有:共四个;;
两天都不是优良的有5个
解:(1)重度污染有两天,故当日遇到重度污染的概率为
(2)是指两天内有且只有一天为优良,故到达日期只能是3日,6日,7日,11日

是指两天连续优良,故到达日期只能是1日,2日,12日,13日,


考点:1、古典概型;2、离散型随机变量的分布列与数学期望.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

计划在某水库建一座至多安装3台发电机的水电站,过去50年的水文资料显示,水库年入流量(年入流量:一年内上游来水与库区降水之和.单位:亿立方米)都在40以上.其中,不足80的年份有10年,不低于80且不超过120的年份有35年,超过120的年份有5年.将年入流量在以上三段的频率作为相应段的概率,并假设各年的年入流量相互独立.
(1)求未来4年中,至多1年的年入流量超过120的概率;
(2)水电站希望安装的发电机尽可能运行,但每年发电机最多可运行台数受年入流量限制,并有如下关系:

年入流量



发电量最多可运行台数
1
2
3
 
若某台发电机运行,则该台年利润为5000万元;若某台发电机未运行,则该台年亏损800万元,欲使水电站年总利润的均值达到最大,应安装发电机多少台?

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

名男生和名女生中任选人参加演讲比赛,
①求所选人都是男生的概率;
②求所选人恰有名女生的概率;
③求所选人中至少有名女生的概率。

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

从某学校的名男生中随机抽取名测量身高,被测学生身高全部介于cm和cm之间,将测量结果按如下方式分成八组:第一组[,),第二组[,),…,第八组[,],右图是按上述分组方法得到的频率分布直方图的一部分,已知第一组与第八组人数相同,第六组的人数为人.
(1)求第七组的频率并估计该校800名男生中身高在cm以上(含cm)的人数;
(2)从第六组和第八组的男生中随机抽取两名男生,记他们的身高分别为,事件{},求

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

下图是某市3月1日至14日空气质量指数趋势图,空气质量指数小于1 00表示空气质量优良,空气质量指数大于200表示空气重度污染,某人随机选择3月1曰至3月1 3日中某一天到达该市,并停留2天.

(l)求此人到达当日空气重度污染的概率;
(2)设X是此人停留期间空气质量优良的天数,求X的分布列与数学期望。

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

某大型公益活动从一所名牌大学的四个学院中选出了名学生作为志愿者,参加相关的活
动事宜.学生来源人数如下表:

学院
外语学院
生命科学学院
化工学院
艺术学院
人数




 
(1)若从这名学生中随机选出两名,求两名学生来自同一学院的概率;
(2)现要从这名学生中随机选出两名学生向观众宣讲此次公益活动的主题.设其中来自外语学院的人数为,令,求随机变量的分布列及数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

为防止山体滑坡,某地决定建设既美化又防护的绿化带,种植松树、柳树等植物.某人一次种植了n株柳树,各株柳树成活与否是相互独立的,成活率为p,设ξ为成活柳树的株数,数学期望E(ξ)=3,标准差σ(ξ)为.
(1)求n、p的值并写出ξ的分布列;
(2)若有3株或3株以上的柳树未成活,则需要补种,求需要补种柳树的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

某农场计划种植某种新作物,为此对这种作物的两个品种(分别称为品种甲和品种乙)进行田间试验.选取两大块地,每大块地分成n小块地,在总共2n小块地中,随机选n小块地种植品种甲,另外n小块地种植品种乙.
(1)假设n=4,在第一大块地中,种植品种甲的小块地的数目记为X,求X的分布列和数学期望;
(2)试验时每大块地分成8小块,即n=8,试验结束后得到品种甲和品种乙在各小块地上的每公顷产量(单位:kg/hm2)如下表:

品种甲
 
403
 
397
 
390
 
404
 
388
 
400
 
412
 
406
 
品种乙
 
419
 
403
 
412
 
418
 
408
 
423
 
400
 
413
 
分别求品种甲和品种乙的每公顷产量的样本平均数和样本方差;根据试验结果,你认为应该种植哪一品种?

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知离散型随机变量ξ1的概率分布为

ξ1
1
2
3
4
5
6
7
P







离散型随机变量ξ2的概率分布为
ξ2
3.7
3.8
3.9
4
4.1
4.2
4.3
P







求这两个随机变量数学期望、方差与标准差.

查看答案和解析>>

同步练习册答案