精英家教网 > 高中数学 > 题目详情
f(x)=x+
4x

(1)判断f(x)的奇偶性;
(2)判断f(x)在(0,2]和[2,+∞)的单调性,并用定义证明.
分析:(1)根据f(x)=x+
4
x
求出其定义域,判断是否关于原点对称.求出f(-x)的解析式与f(x)的解析式进行判断,得出奇偶性.
(2)在区间内分别设出x1<x2.求f(x1)-f(x2),并化简为几个式子乘积或商的形式,根据给定的区间进行判断各个式子的符号,然后判断出最终f(x1)-f(x2)的符号.最后得出f(x1)与f(x2)的关系,判断与x1 和x2之间的关系,根据单调性的定义得出结论.
解答:解:(1)由f(x)=x+
4
x
知,定义域为{x|x≠0}
显然,定义域关于原点对称.
f(-x)=-x+
4
-x
=-(x+
4
x
)
=-f(x)
所以.f(x)为奇函数
(2)①任取x1<x2且x1,x2∈(0,2]
由题意,f(x1)-f(x2)=x1+
4
x1
-(x2+
4
x2
)

=(x1-x2)+4
x2-x1
x1x2

=(x1-x2)(1-
4
x1x2

因为x1<x2且x1,x2∈(0,2]
则x1-x2<0;
0<x1x2<4,
4
x1x2
>1
,所以1-
4
x1x2
<0
=(x1-x2)(1-
4
x1x2
)>0
故f(x1)>f(x2
所以,f(x)在(0,2]为上的减函数.
②任取x1<x2且x1,x2∈[2,+∞)
由题意,f(x1)-f(x2)=x1+
4
x1
-(x2+
4
x2
)

=(x1-x2)+4
x2-x1
x1x2

=(x1-x2)(1-
4
x1x2

因为x1<x2且x1,x2∈[2,+∞)
则x1-x2<0;
x1x2>4,0<
4
x1x2
<1
,所以1-
4
x1x2
>0
=(x1-x2)(1-
4
x1x2
)<0
故f(x1)<f(x2
所以,f(x)在为[2,+∞)上的增函数.
∴f(x)在(0,2]上为减函数,[2,+∞)上为增函数.
点评:本题考查双钩函数的性质,通过双钩函数来考查奇偶性和单调性通过定义的证明.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

h(x)=x+
m
x
x∈[
1
4
,5]
,其中m是不等于零的常数,
(1)(理)写出h(4x)的定义域;
(文)m=1时,直接写出h(x)的值域;
(2)(文、理)求h(x)的单调递增区间;
(3)已知函数f(x)(x∈[a,b]),定义:f1(x)=minf(t)|a≤t≤x(x∈[a,b]),f2(x)=maxf(t)|a≤t≤x(x∈[a,b]).其中,minf(x)|x∈D表示函数f(x)在D上的最小值,maxf(x)|x∈D表示函数f(x)在D上的最大值.例如:f(x)=cosx,x∈[0,π],则f1(x)=cosx,x∈[0,π],f2(x)=1,x∈[0,π].
(理)当m=1时,设M(x)=
h(x)+h(4x)
2
+
|h(x)-h(4x)|
2
,不等式t≤M1(x)-M2(x)≤n恒成立,求t,n的取值范围;
(文)当m=1时,|h1(x)-h2(x)|≤n恒成立,求n的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

f(x)=
-
x+4
x+2
,x∈[-
1
2
,0]
-4x+
3
2
,x∈(0,1]
,则f(x)的最小值为(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

设函数f(x)是定义在R上的偶函数,且f(x+2)=f(x)恒成立;当x∈[0,1]时,f(x)=x3-4x+3.有下列命题:
f(-
3
4
) <f(
15
2
)

②当x∈[-1,0]时f(x)=x3+4x+3;
③f(x)(x≥0)的图象与x轴的交点的横坐标由小到大构成一个无穷等差数列;
④关于x的方程f(x)=|x|在x∈[-3,4]上有7个不同的根.
其中真命题的个数为(  )

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

f(x)=x+
4
x

(1)判断f(x)的奇偶性,
(2)判断f(x)在(0,2]和[2,+∞)的单调性,并用定义证明.

查看答案和解析>>

同步练习册答案