精英家教网 > 高中数学 > 题目详情
设函数f(x)是定义在R上的偶函数,且f(x+2)=f(x)恒成立;当x∈[0,1]时,f(x)=x3-4x+3.有下列命题:
f(-
3
4
) <f(
15
2
)

②当x∈[-1,0]时f(x)=x3+4x+3;
③f(x)(x≥0)的图象与x轴的交点的横坐标由小到大构成一个无穷等差数列;
④关于x的方程f(x)=|x|在x∈[-3,4]上有7个不同的根.
其中真命题的个数为(  )
分析:①因为函数f(x)是定义在R上的偶函数,所以f(-
3
4
)=f(
3
4
)
;又因为对于任意的x等式f(x+2)=f(x)恒成立,所以
f(
15
2
)可化为f(
1
2
),因为
1
2
3
4
都在[0,1]上,所以可以比较f(
3
4
)与f(
1
2
)
大小,通过计算可得f(
1
2
)>f(
3
4
)
.故可知①正确.
②当x∈[-1,0]时,则-x∈[0,1],于是f(x)=f(-x)=(-x)3-4(-x)+3=-x3+4x+3≠x3+4x+3.故可知②不正确.
③因为f(x)=3x2-4,所以当x∈[0,1]时,可知f(x)在x∈[0,1]上单调递减.又因为f(0)=3,f(1)=0,所以
f(x)=0在x∈[0,1]时只有一个根1;同时,因为f(x)是偶函数,所以f(x)在x∈[-1,0]上亦有且只有一个根-1,又因为对于任意的x等式f(x+2)=f(x)恒成立,所以有f(1)=f(3)=f(5)=…
故f(x)(x≥0)的图象与x轴的交点的横坐标为:1,3,5,….从而可判断出③正确.
④由③可知f(x)在x∈[0,1]上单调递减,且0≤f(x)≤3,则函数y=f(x)与y=|x|的图象在x∈[0,1]上有且只有有一个交点,即方程f(x)=|x|在x∈[0,1]上有且只有一个根,设为x1.由于函数f(x)是定义在R上的偶函数,所以f(-x1)=f(x1)=|-x1|,即-x1也是方程f(x)=|x|的一个根,这就是说:方程f(x)=|x|在x∈[-1,1]上有且只有两个根x1,-x1.同理,方程f(x)=|x|分别在x∈[1,2]、[2,3]上各有一个根,设为x2,x3;易知,方程f(x)=|x|分别在x∈[-2,-1]、[-3,-2]上亦各有一个根,且为-x2,-x3.在x∈(3,4]上,0<f(x)≤3,而3<|x|,故方程f(x)=|x|无根.综上可知:方程f(x)=|x|在x∈[-3,4]上共有6个根.因此④不正确.
解答:解:①∵函数f(x)是定义在R上的偶函数,∴f(-
3
4
)=f(
3
4
)
=(
3
4
)3-4×
3
4
+3
=
27
64

又∵对于任意的x等式f(x+2)=f(x)恒成立,
∴f(
15
2
)=f(6+
3
2
)=f(
3
2
)=f(2-
1
2
)=f(-
1
2
)=f(
1
2
)=(
1
2
)3-4×
1
2
+3
=
1
8
+1
>f(-
3
4
).
故可知①正确.
②当x∈[-1,0]时,则-x∈[0,1],于是f(x)=f(-x)=(-x)3-4(-x)+3=-x3+4x+3≠x3+4x+3.
故可知②不正确.
③因为f(x)=3x2-4,所以当x∈[0,1]时,恒有f(x)<0成立,故f(x)在x∈[0,1]时单调递减.
又因为f(0)=3,f(1)=0,所以f(x)=0在x∈[0,1]时有且只有一个根1;同理f(x)=0在x∈[-1,0]上有且只有一个根-1.
又因为对于任意的x等式f(x+2)=f(x)恒成立,所以有f(-1)=f(1)=f(3)=f(5)=…;
故f(x)(x≥0)的图象与x轴的交点的横坐标为:1,3,5,….是由小到大构成一个无穷等差数列{2n-1}.
故③正确.
④由③可知f(x)在x∈[0,1]时单调递减,且0≤f(x)≤3,
则函数y=f(x)与y=|x|的图象在x∈[0,1]上有且只有有一个交点,即方程f(x)=|x|在x∈[0,1]上有且只有一个根,设为x1
由于函数f(x)是定义在R上的偶函数,所以f(-x1)=f(x1)=|-x1|,即-x1也是方程f(x)=|x|的一个根.
同理,方程f(x)=|x|分别在x∈[1,2]、[2,3]上各有一个根,设为x2,x3;易知,方程f(x)=|x|分别在x∈[-2,-1]、[-3,-2]上亦各有一个根,且为-x2,-x3
在x∈(3,4]上,0<f(x)≤3,而3<|x|,故方程f(x)=|x|无根.
综上可知:方程f(x)=|x|在x∈[-3,4]上共有6个根.因此④不正确.
综上可知①、③正确.
点评:此题综合考查了函数的单调性、奇偶性、周期性及方程的根,等差数列等知识;还考查了数形结合的思想方法.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

设函数f(x)是定义在(-∞,+∞)上的增函数,如果不等式f(1-ax-x2)<f(2-a)对于任意x∈[0,1]恒成立,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

设函数f(x)是定义在(0,+∞)上的减函数,并且满足f(xy)=f(x)+f(y),f(
1
3
)=1

(1)求f(
1
9
)

(2)若f(x)+f(2-x)<2,求x的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

设函数f(x)是定义在[-1,0)∪(0,1]上的偶函数,当x∈[-1,0)时,f(x)=x3-ax(a∈R).
(1)当x∈(0,1]时,求f(x)的解析式;
(2)若a>3,试判断f(x)在(0,1]上的单调性,并证明你的结论;
(3)是否存在a,使得当x∈(0,1]时,f(x)有最大值1?

查看答案和解析>>

科目:高中数学 来源: 题型:

设函数f(x)是定义在[a,b]上的奇函数,则f(a+b)=
0
0

查看答案和解析>>

科目:高中数学 来源: 题型:

设函数f(x)是定义在R上的偶函数.若当x≥0时,f(x)=
|1-
1
x
0
x>0;,
x=0.

(1)求f(x)在(-∞,0)上的解析式.
(2)请你作出函数f(x)的大致图象.
(3)当0<a<b时,若f(a)=f(b),求ab的取值范围.
(4)若关于x的方程f2(x)+bf(x)+c=0有7个不同实数解,求b,c满足的条件.

查看答案和解析>>

同步练习册答案