分析:①因为函数f(x)是定义在R上的偶函数,所以
f(-)=f();又因为对于任意的x等式f(x+2)=f(x)恒成立,所以
f(
)可化为f(
),因为
与都在[0,1]上,所以可以比较
f()与f()大小,通过计算可得
f()>f().故可知①正确.
②当x∈[-1,0]时,则-x∈[0,1],于是f(x)=f(-x)=(-x)
3-4(-x)+3=-x
3+4x+3≠x
3+4x+3.故可知②不正确.
③因为f
′(x)=3x
2-4,所以当x∈[0,1]时,可知f(x)在x∈[0,1]上单调递减.又因为f(0)=3,f(1)=0,所以
f(x)=0在x∈[0,1]时只有一个根1;同时,因为f(x)是偶函数,所以f(x)在x∈[-1,0]上亦有且只有一个根-1,又因为对于任意的x等式f(x+2)=f(x)恒成立,所以有f(1)=f(3)=f(5)=…
故f(x)(x≥0)的图象与x轴的交点的横坐标为:1,3,5,….从而可判断出③正确.
④由③可知f(x)在x∈[0,1]上单调递减,且0≤f(x)≤3,则函数y=f(x)与y=|x|的图象在x∈[0,1]上有且只有有一个交点,即方程f(x)=|x|在x∈[0,1]上有且只有一个根,设为x
1.由于函数f(x)是定义在R上的偶函数,所以f(-x
1)=f(x
1)=|-x
1|,即-x
1也是方程f(x)=|x|的一个根,这就是说:方程f(x)=|x|在x∈[-1,1]上有且只有两个根x
1,-x
1.同理,方程f(x)=|x|分别在x∈[1,2]、[2,3]上各有一个根,设为x
2,x
3;易知,方程f(x)=|x|分别在x∈[-2,-1]、[-3,-2]上亦各有一个根,且为-x
2,-x
3.在x∈(3,4]上,0<f(x)≤3,而3<|x|,故方程f(x)=|x|无根.综上可知:方程f(x)=|x|在x∈[-3,4]上共有6个根.因此④不正确.
解答:解:①∵函数f(x)是定义在R上的偶函数,∴
f(-)=f()=
()3-4×+3=
;
又∵对于任意的x等式f(x+2)=f(x)恒成立,
∴f(
)=f(6+
)=f(
)=f(2-
)=f(
-)=f(
)=
()3-4×+3=
+1>f(
-).
故可知①正确.
②当x∈[-1,0]时,则-x∈[0,1],于是f(x)=f(-x)=(-x)
3-4(-x)+3=-x
3+4x+3≠x
3+4x+3.
故可知②不正确.
③因为f
′(x)=3x
2-4,所以当x∈[0,1]时,恒有f
′(x)<0成立,故f(x)在x∈[0,1]时单调递减.
又因为f(0)=3,f(1)=0,所以f(x)=0在x∈[0,1]时有且只有一个根1;同理f(x)=0在x∈[-1,0]上有且只有一个根-1.
又因为对于任意的x等式f(x+2)=f(x)恒成立,所以有f(-1)=f(1)=f(3)=f(5)=…;
故f(x)(x≥0)的图象与x轴的交点的横坐标为:1,3,5,….是由小到大构成一个无穷等差数列{2n-1}.
故③正确.
④由③可知f(x)在x∈[0,1]时单调递减,且0≤f(x)≤3,
则函数y=f(x)与y=|x|的图象在x∈[0,1]上有且只有有一个交点,即方程f(x)=|x|在x∈[0,1]上有且只有一个根,设为x
1.
由于函数f(x)是定义在R上的偶函数,所以f(-x
1)=f(x
1)=|-x
1|,即-x
1也是方程f(x)=|x|的一个根.
同理,方程f(x)=|x|分别在x∈[1,2]、[2,3]上各有一个根,设为x
2,x
3;易知,方程f(x)=|x|分别在x∈[-2,-1]、[-3,-2]上亦各有一个根,且为-x
2,-x
3.
在x∈(3,4]上,0<f(x)≤3,而3<|x|,故方程f(x)=|x|无根.
综上可知:方程f(x)=|x|在x∈[-3,4]上共有6个根.因此④不正确.
综上可知①、③正确.
点评:此题综合考查了函数的单调性、奇偶性、周期性及方程的根,等差数列等知识;还考查了数形结合的思想方法.