精英家教网 > 高中数学 > 题目详情
已知数列{an}中,a1=1,a2=3且2an+1=an+2+an(n∈N+)数列{bn}的前n项和为Sn,其中
(1)求数列{an}和{bn}的通项公式;
(2)若的表达式.
【答案】分析:(1)由2an+1=an+2+an可得数列{an为等差数列,由a1=1,a2=3可得d=2代入可求数列{an的通项公式;利用递推公式,可得,数列{bn从第二项开始的等比数列,代入求数列{bn}的通项公式;
(2)由于数列{an}为等差数列,{bn}为等比数列,利用乘公比错位相减法求和.
解答:解:(1)∵2an+1=an+2+an∴数列{an}是等差数列,(1分)
∴公差d=a2-a1=2∴an=2n-1 (3分)
∵bn+1=-Sn∴bn=-Sn-1(n≥2)
bn+1-bn=-bn,∴
又∵b2=-S1=1

∴数列{bn}从第二项开始是等比数列,
(6分)
(2)∵(7分)∴
∴3Tn=-2+3×31+5×32+7×33++(2n-1)×3n-1(10分)
错位相减并整理得.(12分)
点评:本题主要考查由等差中项法证明数列是等差数列进而求等差数列的通项公式、由递推公式求证等比数列,运用递推公式时一定要注意n≥2的条件及对n=1的检验;错位相减求和是数列求和的重要方法,要注意掌握.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知数列{an}中,a1=1,an+1-an=
1
3n+1
(n∈N*)
,则
lim
n→∞
an
=
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知数列{an}中,a1=1,an+1=
an
1+2an
,则{an}的通项公式an=
1
2n-1
1
2n-1

查看答案和解析>>

科目:高中数学 来源: 题型:

已知数列{an}中,a1=1,a1+2a2+3a3+…+nan=
n+1
2
an+1(n∈N*)

(1)求数列{an}的通项公式;
(2)求数列{
2n
an
}
的前n项和Tn

查看答案和解析>>

科目:高中数学 来源: 题型:

已知数列{an}中,a1=
1
2
Sn
为数列的前n项和,且Sn
1
an
的一个等比中项为n(n∈N*
),则
lim
n→∞
Sn
=
1
1

查看答案和解析>>

科目:高中数学 来源: 题型:

已知数列{an}中,a1=1,2nan+1=(n+1)an,则数列{an}的通项公式为(  )
A、
n
2n
B、
n
2n-1
C、
n
2n-1
D、
n+1
2n

查看答案和解析>>

同步练习册答案