精英家教网 > 高中数学 > 题目详情

已知函数f(x)=-x3+ax2+b(a、b∈R).
(1)若a>0,求函数f(x)的单调区间;
(2)若a=1,函数f(x)的图象能否总在直线y=b的下方?说明理由;
(3)若函数f(x)在[0,2]上是增函数,x=2是方程f(x)=0的一个根,求证:f(1)≤-2.

解:∵f(x)=-x3+ax2+b(a、b∈R)
∴f'(x)=-3x2+2ax=-x(3x-2a).
(1)若a>0,令f'(x)=0得x1=0,x2=,则

∴f(x)的单调增区间为:(0,),单调递减区间为:(-∞,0),(,+∞)

(2)若a=1,由(1)可得f(x)在上单调递增,
时,f(x)>f(0)=b
∴f(x)的图象不可能总在直线y=b的下方.
(3)若函数f(x)在[0,2]上是增函数,则x∈[0,2]时f'(x)=-3x2+2ax≥0恒成立.
对x∈[0,2]恒成立,
∴a≥3.
又f(2)=0,
∴-8+4a=b+0得b=8-4a,
∴f(1)=-1+a+b=7-3a≤-2.
分析:(1)三次多项式函数的单调性问题,先求导,令f′(x)≥0和f′(x)≤0,解不等式即可.
(2)结合(1)问中函数的性质求解.
(3)由f(x)在[0,2]上是增函数可求出a的范围,x=2是方程f(x)=0的一个根,找出a和b的关系,可证.
点评:本题考查函数单调性的判断及应用、分类讨论思想,综合性较强.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知函数f(x)=sinxcosφ+cosxsinφ(其中x∈R,0<φ<π).
(1)求函数f(x)的最小正周期;
(2)若函数y=f(2x+
π
4
)
的图象关于直线x=
π
6
对称,求φ的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)为定义在R上的奇函数,且当x>0时,f(x)=(sinx+cosx)2+2cos2x,
(1)求x<0,时f(x)的表达式;
(2)若关于x的方程f(x)-a=o有解,求实数a的范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=aInx-ax,(a∈R)
(1)求f(x)的单调递增区间;(文科可参考公式:(Inx)=
1
x

(2)若f′(2)=1,记函数g(x)=x3+x2[f(x)+
m
2
]
,若g(x)在区间(1,3)上总不单调,求实数m的范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=x2-bx的图象在点A(1,f(1))处的切线l与直线3x-y+2=0平行,若数列{
1
f(n)
}
的前n项和为Sn,则S2010的值为(  )
A、
2011
2012
B、
2010
2011
C、
2009
2010
D、
2008
2009

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)是定义在区间(-1,1)上的奇函数,且对于x∈(-1,1)恒有f’(x)<0成立,若f(-2a2+2)+f(a2+2a+1)<0,则实数a的取值范围是
 

查看答案和解析>>

同步练习册答案