设数列
为等比数列,数列
满足
,
,已知
,
,其中
.
(Ⅰ)求数列
的首项和公比;
(Ⅱ)当m=1时,求
;
(Ⅲ)设
为数列
的前
项和,若对于任意的正整数
,都有
,求实数
的取值范围.
科目:高中数学 来源: 题型:
查看答案和解析>>
科目:高中数学 来源: 题型:
查看答案和解析>>
科目:高中数学 来源: 题型:
定义:若数列
满足
,则称数列
为“平方递推数列”。已知数列
中,
,点
在函数
的图像上,其中
为正整数。
(1)证明:数列
是“平方递推数列”,且数列
为等比数列。
(2)设(1)中“平方递推数列”的前
项之积为
,即![]()
,求数列
的通项及
关于
的表达式。
(3)记
,求数列
的前
项之和
,并求使![]()
的
的最小值。
查看答案和解析>>
科目:高中数学 来源:2013-2014学年山东省淄博市高三3月模拟考试理科数学试卷(解析版) 题型:解答题
若数列
满足
,则称数列
为“平方递推数列”.已知数列
中,
,点
在函数
的图象上,其中
为正整数.
(1)证明数列
是“平方递推数列”,且数列
为等比数列;
(2)设(1)中“平方递推数列”的前
项积为
,
即
,求
;
(3)在(2)的条件下,记
,求数列
的前
项和
,并求使
的
的最小值.
查看答案和解析>>
科目:高中数学 来源:2011-2012学年上海市青浦区高三上学期期终学习质量调研测试数学试卷 题型:解答题
(本题满分18分) 本题共有3个小题,第1小题满分4分,第2小题满分6分,第3小题满分8分.
设
,对于项数为
的有穷数列
,令
为
中最大值,称数列
为
的“创新数列”.例如数列
3,5,4,7的创新数列为3,5,5,7.
考查自然数
的所有排列,将每种排列都视为一个有穷数列
.
(1)若
,写出创新数列为3,4,4,4的所有数列
;
(2)是否存在数列
的创新数列为等比数列?若存在,求出符合条件的创新数列;若不存在,请说明理由.
(3)是否存在数列
,使它的创新数列为等差数列?若存在,求出满足所有条件的数列
的个数;若不存在,请说明理由.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com