【题目】某中学为了组建一支业余足球队,在高一年级随机选取50名男生测量身高,发现被测男生的身高全部在到之间,将测量结果按如下方式分成六组:第1组,第2组,…,第6组,如图是按上述分组得到的频率分布直方图,以频率近似概率.
(1)若学校要从中选1名男生担任足球队长,求被选取的男生恰好在第5组或第6组的概率;
(2)试估计该校高一年级全体男生身高的平均数(同一组中的数据用该组区间的中点值代表)与中位数;
(3)现在从第5与第6组男生中选取两名同学担任守门员,求选取的两人中最多有1名男生来自第5组的概率.
【答案】(1)0.12;(2)平均数为168.72,中位数为168.25;(3).
【解析】
(1)由直方图可得,被选取的男生恰好在第5组或第6组的概率;(2)每个矩形的中点横坐标与该矩形的纵坐标、组距相乘后求和可得平均值;直方图左右两边面积相等处横坐标表示中位数;(3)利用列举法,从第5与第6组男生中选取两名同学担任守门员共有15种情况,其中选取的两人中最多有1名男生来自第5组的情况有9种,由古典概型概率公式可得结果.
(1)被选取的男生恰好在第5组或第6组的概率
.
(2)全体男生身高的平均数为 .
设全体男生身高的中位数为,因为第1组对应的频率为0.20,第2组对应的频率为0.28,所以,则,解得.
(3)第5组有人,记为,,,,同理第6组有2人记为,,
所有的情况为、、、、、、、、、、、、、、,共15种,
选取的两人中最多有1名男生来自第5组的有、、、、、、、、共9种,
所以所求概率为.
科目:高中数学 来源: 题型:
【题目】现采用随机模拟的方法估计某运动员射击4次,至少击中3次的概率;先由计算器给出0到9之间取整数值的随机数,指定0、1、2、3表示没有击中目标, 4、5、6、7、8、9表示击中目标,以4个随机数为一组,代表射击4次的结果,经随机模拟产生了20组随机数,根据以下数据估计该射击运动员射击4次至少击中3次的概率为( )
7527 0293 7140 9857 0347 4373 8636 6947 1417 4698
0371 6233 2616 8045 6011 3661 9597 7424 7610 4281
A.0.4B.0.45C.0.5D.0.55
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】我国古代数学家祖暅提出原理:“幂势既同,则积不容异”.其中“幂”是截面积,“势”是几何体的高.该原理的意思是:夹在两个平行平面间的两个几何体,被任一平行于这两个平行平面的平面所截,若所截的两个截面的面积恒相等,则这两个几何体的体积相等.如图,在空间直角坐标系中的平面内,若函数的图象与轴围成一个封闭的区域,将区域沿轴的正方向平移8个单位长度,得到几何体如图一,现有一个与之等高的圆柱如图二,其底面积与区域的面积相等,则此圆柱的体积为__________.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,过椭圆E:(a>b>0)的左焦点F1作x轴的垂线交椭圆E于P,Q两点,点A,B是椭圆E的顶点,且AB∥OP,F2为右焦点,△PF2Q的周长为8.
(1)求椭圆E的方程;
(2)过点F1作直线l与椭圆E交于C,D两点,若△OCD的面积为,求直线l的方程.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,矩形ABCD中,,,F分别在线段BC和AD上,,将矩形ABEF沿EF折起记折起后的矩形为MNEF,且平面平面ECDF.
Ⅰ求证:平面MFD;
Ⅱ若,求证:;
Ⅲ求四面体NFEC体积的最大值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图所示,三棱锥放置在以为直径的半圆面上,为圆心,为圆弧上的一点,为线段上的一点,且,,.
(Ⅰ)求证:平面平面;
(Ⅱ)当二面角的平面角为时,求的值.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com