精英家教网 > 高中数学 > 题目详情

【题目】某中学为了组建一支业余足球队,在高一年级随机选取50名男生测量身高,发现被测男生的身高全部在之间,将测量结果按如下方式分成六组:第1,第2,第6,如图是按上述分组得到的频率分布直方图,以频率近似概率.

1)若学校要从中选1名男生担任足球队长,求被选取的男生恰好在第5组或第6组的概率;

2)试估计该校高一年级全体男生身高的平均数(同一组中的数据用该组区间的中点值代表)与中位数;

3)现在从第5与第6组男生中选取两名同学担任守门员,求选取的两人中最多有1名男生来自第5组的概率.

【答案】(1)0.12;(2)平均数为168.72,中位数为168.25;(3).

【解析】

1)由直方图可得,被选取的男生恰好在第5组或第6组的概率;(2)每个矩形的中点横坐标与该矩形的纵坐标、组距相乘后求和可得平均值;直方图左右两边面积相等处横坐标表示中位数;(3)利用列举法,从第5与第6组男生中选取两名同学担任守门员共有15种情况,其中选取的两人中最多有1名男生来自第5组的情况有9种,由古典概型概率公式可得结果.

1)被选取的男生恰好在第5组或第6组的概率

.

2)全体男生身高的平均数为 .

设全体男生身高的中位数为,因为第1对应的频率为0.20,第2对应的频率为0.28,所以,则,解得.

3)第5组有人,记为,同理第6组有2人记为

所有的情况为,共15种,

选取的两人中最多有1名男生来自第5组的有9种,

所以所求概率为.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知曲线y=5,:

(1)曲线上与直线y=2x-4平行的切线方程.

(2)求过点P(0,5),且与曲线相切的切线方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】现采用随机模拟的方法估计某运动员射击4次,至少击中3次的概率;先由计算器给出09之间取整数值的随机数,指定0、1、2、3表示没有击中目标, 4、5、6、7、8、9表示击中目标,以4个随机数为一组,代表射击4次的结果,经随机模拟产生了20组随机数,根据以下数据估计该射击运动员射击4次至少击中3次的概率为(

7527 0293 7140 9857 0347 4373 8636 6947 1417 4698

0371 6233 2616 8045 6011 3661 9597 7424 7610 4281

A.0.4B.0.45C.0.5D.0.55

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】我国古代数学家祖暅提出原理:“幂势既同,则积不容异”.其中“幂”是截面积,“势”是几何体的高.该原理的意思是:夹在两个平行平面间的两个几何体,被任一平行于这两个平行平面的平面所截,若所截的两个截面的面积恒相等,则这两个几何体的体积相等.如图,在空间直角坐标系中的平面内,若函数的图象与轴围成一个封闭的区域,将区域沿轴的正方向平移8个单位长度,得到几何体如图一,现有一个与之等高的圆柱如图二,其底面积与区域的面积相等,则此圆柱的体积为__________

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,过椭圆Eab0)的左焦点F1x轴的垂线交椭圆EPQ两点,点AB是椭圆E的顶点,且ABOPF2为右焦点,△PF2Q的周长为8

1)求椭圆E的方程;

2)过点F1作直线l与椭圆E交于CD两点,若△OCD的面积为,求直线l的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在直角梯形中,,点中点,且,现将三角形沿折起,使点到达点的位置,且与平面所成的角为.

(1)求证:平面平面;

(2)求二面角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数

)求函数的极值点.

)设函数,其中,求函数上的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,矩形ABCD中,F分别在线段BCAD上,,将矩形ABEF沿EF折起记折起后的矩形为MNEF,且平面平面ECDF

求证:平面MFD

,求证:

求四面体NFEC体积的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图所示,三棱锥放置在以为直径的半圆面上,为圆心,为圆弧上的一点,为线段上的一点,且.

(Ⅰ)求证:平面平面

(Ⅱ)当二面角的平面角为时,求的值.

查看答案和解析>>

同步练习册答案