精英家教网 > 高中数学 > 题目详情
设函数f(x)=log2(10-ax),a为常数,若f(3)=2。
(1)求a的值;
(2)求使f(x)≤0的x的取值范围;
(3)若在区间[1,3]内的每一个x值,不等式f(x)>2x+m恒成立,求实数m的取值范围;
(4)讨论关于x的方程|f(x)|=c+9x-x2的根的个数。
解:(1)由,得
∴10-3a=4,∴a=2。
(2) 由(1)得


的x的取值范围为
(3) 由在[1,3]上恒成立,
即改求函数在[1,3]上的最小值,
上是单调递减,且上是单调递增,
在[1,3]上是单调递减的,
,即m<-4,
故实数m的取值范围是
(4)要求方程的根的个数,
即改求函数和函数的图象的交点个数,
上递减,在上递增,



由图象,得
①当c+>0,即c>-时,方程有两个根;
②当c+=0,即c=-时,方程有一个根;
③当c+<0,即c<-时,方程没有根。
练习册系列答案
相关习题

科目:高中数学 来源:陕西省汉中地区2007-2008学年度高三数学第一学期期中考试试卷(理科) 题型:022

若函数f(x)=的定义域为M,g(x)=lo(2+x=6x2)的单调递减区间是开区间N,设全集U=R,则M∩CU(N)=________.

查看答案和解析>>

科目:高中数学 来源:苏教版江苏省扬州市2007-2008学年度五校联考高三数学试题 题型:044

已知函数(m∈R)

(1)若y=lo[8-f(x)]在[1,+∞)上是单调减函数,求实数m的取值范围;

(2)设g(x)=f(x)+lnx,当m≥-2时,求g(x)在上的最大值.

查看答案和解析>>

科目:高中数学 来源:山东省莒南一中2008-2009学年度高三第一学期学业水平阶段性测评数学文 题型:044

设f(x)=lo的奇函数,a为常数,

(Ⅰ)求a的值;

(Ⅱ)证明:f(x)在(1,+∞)内单调递增;

(Ⅲ)若对于[3,4]上的每一个x的值,不等式f(x)>()x+m恒成立,求实数m的取值范围.

查看答案和解析>>

同步练习册答案