精英家教网 > 高中数学 > 题目详情
求函数的定义域:y=4+x2
考点:函数的定义域及其求法
专题:函数的性质及应用
分析:直接利用二次函数的性质,写出定义域即可.
解答: 解:y=4+x2,是二次函数,所以函数的定义域为:R.
点评:本题考查基本函数的定义域的求法,是基础题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

关于x不等式log
1
a
x2+ax+5
+1)•log5(x2+ax+6)+loga3≥0解集为单元素集,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知f(x)、g(x)都是定义域为R的连续函数.已知:g(x)满足:①当x>O时,g′(x)>0 恒成立;②?x∈R都有g(x)=g(-x).f(x)满足:①?x∈R都有f(x+
3
)=f(x-
3
);②当x∈[-
3
2
3
2
]时,f(x)=x3-3x.若关于;C的不等式g[f(x)]≤g(a2-a+2)对x∈[-
3
2
-2
3
3
2
-2
3
]恒成立,则a的取值范围是(  )
A、(-∞,0]∪[1,+∞)
B、[0,1]
C、[
1
2
-
3
3
4
,-
1
2
+
3
3
4
]
D、(-∞,-1]∪[2,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:

证明:tanα+tanβ=tan(α+β)-tanαtanβtan(α+β)

查看答案和解析>>

科目:高中数学 来源: 题型:

函数y=4x-2x+1的值域是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知a∈R,函数f(x)=
1-
1
2x
,x>0
(a-1)x+1,x≤0

(1)证明:函数f(x)在(0,+∞)上单调递增;
(2)求函数f(x)的零点.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知x∈(5,9),y∈(7,10),则x-y∈
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知f(x)=sin2x-
3
cos2x+n-1(n∈N*).
(1)在锐角△ABC中,a,b,c分别是角A,B,C的对边,当n=1时,f(A)=
3
,且c=3,△ABC的面积为3
3
,求b的值.
(2)若f(x)的最大值为an(an为数列{an}的通项公式),又数列{bn}满足bn=
1
anan+1
,求数列{bn}的前n项和Tn

查看答案和解析>>

科目:高中数学 来源: 题型:

等差数列{an}的前n项和为Sn,已知a3=-6,S5=S6
(1)求{an}的通项公式;
(2)若数列{2n-1•an}的前n项和为Tn,求不等式Tn-n•2n+1+100>0的解集.

查看答案和解析>>

同步练习册答案