11£®ÒÑÖªº¯Êýf£¨x£©=xex£¬¼Çf0£¨x£©=f¡ä£¨x£©£¬f1£¨x£©=f¡ä£¨x0£©£¬¡­£¬fn£¨x£©=f¡än-1£¨x£©ÇÒx2£¾x1£¬¶ÔÓÚÏÂÁÐÃüÌ⣺
¢Ùº¯Êýf£¨x£©´æÔÚÆ½ÐÐÓÚxÖáµÄÇÐÏߣ»
¢Ú$\frac{f£¨{x}_{1}£©-f£¨{x}_{2}£©}{{x}_{1}-{x}_{2}}$£¾0£»
¢Ûf¡ä2012£¨x£©=xex+2014ex£»
¢Üf£¨x1£©+x2£¼f£¨x2£©+x1£®
¢Ýµ±x1£¾0ʱ£¬ÓÐx2f£¨x1£©£¼x1f£¨x2£©£®
ÆäÖÐÕýÈ·µÄÃüÌâÐòºÅÊǢ٢ۢݣ¨Ð´³öËùÓÐÂú×ãÌâÄ¿Ìõ¼þµÄÐòºÅ£©£®

·ÖÎö ¸ù¾Ýµ¼ÊýµÄ¼¸ºÎÒâÒåÅжϢÙÕýÈ·£¬¸ù¾Ýµ¼ÊýºÍº¯ÊýµÄµ¥µ÷ÐÔÅÐ¶Ï¢Ú´í£»¸ù¾Ýµ¼ÊýµÄÔËË㣬µÃµ½¢ÛÕýÈ·£¬¸ù¾Ýµ¼ÊýÓ뺯ÊýµÄµ¥µ÷ÐԵĹØÏµÅÐ¶Ï¢Ü´í£®¸ù¾Ýº¯ÊýµÄбÂʹØÏµ£¬½áºÏº¯ÊýµÄµ¥µ÷ÐÔ¿ÉÒÔÅжϢÝÕýÈ·£®

½â´ð ½â£º¢Ù£¬¡ßf¡ä£¨x£©=£¨x+1£©ex£¬¡àµ±x=-1ʱ£¬f¡ä£¨-1£©=0£¬º¯Êýf£¨x£©´æÔÚÆ½ÐÐÓÚxÖáµÄÇÐÏߣ¬¹Ê¢ÙÕýÈ·£»
¢Ú£¬¡ßf¡ä£¨x£©=£¨x+1£©ex£¬¡àx¡Ê£¨-¡Þ£¬-1£©Ê±£¬º¯Êýf£¨x£©µ¥µ÷µÝ¼õ£¬x¡Ê£¨-1£¬+¡Þ£©Ê±£¬º¯Êýf£¨x£©µ¥µ÷µÝÔö£¬
¹Ê$\frac{f£¨{x}_{1}£©-f£¨{x}_{2}£©}{{x}_{1}-{x}_{2}}$£¾0²»ÄÜÈ·¶¨£¬¹Ê¢Ú´í£»
¢Û£¬¡ßf1£¨x£©=f¡ä£¨x0£©=xex+2ex£¬f2£¨x£©=f1¡ä£¨x£©=xex+3ex£¬¡­£¬fn£¨x£©=f¡än-1£¨x£©=xex+£¨n+1£©ex£¬
¡àf¡ä2012£¨x£©=f2013£¨x£©=xex+2014ex£»¹Ê¢ÛÕýÈ·£»
¢Ü£¬f£¨x1£©+x2£¼f£¨x2£©+x1µÈ¼ÛÓÚf£¨x1£©-x1£¼f£¨x2£©-x2£¬¹¹½¨º¯Êýh£¨x£©=f£¨x£©-x£¬Ôòh¡ä£¨x£©=f¡ä£¨x£©-1=£¨x+1£©ex-1£¬
Ò×Öªº¯Êýh£¨x£©ÔÚRÉϲ»µ¥µ÷£¬¹Ê¢Ü´í£»
¢Ý£¬µ±x1£¾0ʱ£¬ÓÐx2f£¨x1£©£¼x1f£¨x2£©£®ÔòµÈ¼ÛΪ$\frac{f£¨{x}_{1}£©}{{x}_{1}}$£¼$\frac{f£¨{x}_{2}£©}{{x}_{2}}$£¬
¼´º¯ÊýÔÚµãA£¨x1£¬f£¨x1£©£©£¬B£¨x2£¬f£¨x2£©£©´¦£¬ÓëÔ­µãµÄбÂÊÂú×ãkOA£¼kOB£¬
ÓÉ¢ÚÖªº¯ÊýÔÚ£¨0£¬+¡Þ£©Éϵ¥µ÷µÝÔö£¬ÔòkOA£¼kOB£¬³ÉÁ¢£¬¹Ê¢ÝÕýÈ·£¬
¹Ê´ð°¸Îª£º¢Ù¢Û¢Ý

µãÆÀ ±¾ÌâÖ÷Òª¿¼²éÓëµ¼ÊýÓйصÄÃüÌâµÄÕæ¼ÙÅжϣ¬¿¼²éÁ˵¼ÊýµÄ¼¸ºÎÒâÒåÒÔ¼°µ¼ÊýºÍº¯ÊýµÄµ¥µ÷ÐԵĹØÏµ£¬ÒÔ¼°µ¼ÊýµÄÔËËã·¨Ôò£¬ÊôÓÚÖеµÌâ

Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

1£®Çóº¯Êýy=$\sqrt{x}$+$\sqrt{5-x}$µÄÖµÓò£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

2£®ÒÑÖªº¯Êýf£¨x£©=ax2+bx+ln£¨x+1£©£¨a£¬b¡ÊR£©µÄͼÏóÔڵ㣨1£¬f£¨1£©£©´¦µÄÇÐÏß·½³ÌΪ5x+2y-2ln2-1=0£®
£¨1£©ÇóʵÊýaµÄÖµÒÔ¼°º¯Êýy=f£¨x£©µÄ¼«Öµ£»
£¨2£©Èôº¯Êýy=f£¨x£©£¨x¡Ê[0£¬2]£©µÄͼÏóÓëÖ±Ïßy=-$\frac{5}{2}$x+mÇ¡ÓÐÁ½¸ö¹«¹²µã£¬ÇóʵÊýmµÄȡֵ·¶Î§£»
£¨3£©Ö¤Ã÷£ºln£¨n+1£©£¼$\frac{2}{{1}^{2}}$+$\frac{3}{{2}^{2}}$+¡­+$\frac{n+1}{{n}^{2}}$£¨n¡ÊN*£©

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

19£®¼ÆË㣺1.5${\;}^{-\frac{1}{3}}$¡Á£¨-$\frac{6}{7}$£©0+80.25¡Á$\root{4}{2}$+£¨$\root{3}{2}$¡Á$\sqrt{3}$£©6-$\sqrt{£¨-\frac{2}{3}£©^{\frac{2}{3}}}$£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

6£®·½³Ì2x2=xµÄ½âΪx1=0»òx2=$\frac{1}{2}$£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

16£®ÒÑÖª£ºÈçͼ£¬Æ½ÃæPAB¡ÍÆ½ÃæABC£¬Æ½ÃæPAC¡ÍÆ½ÃæABC£¬EÊǵãAÔÚÆ½ÃæPBCÄÚµÄÉäÓ°£¬ÇóÖ¤£ºPA¡ÍÆ½ÃæABC£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

3£®º¯Êýf£¨x£©=$\left\{\begin{array}{l}{a£¨x=1£©}\\{{2}^{|x-1|}£¨x¡Ù1£©}\end{array}\right.$£¬Èô¹ØÓÚxµÄ·½³Ì3|f£¨x£©|2-£¨3a+4£©•f£¨x£©+4a=0ÓÐÎå¸ö²»Í¬µÄʵÊý½â£¬ÔòʵÊýaµÄȡֵ·¶Î§ÊÇ£¨¡¡¡¡£©
A£®£¨1£¬$\frac{4}{3}$£©¡È£¨$\frac{4}{3}$£¬2£©B£®£¨1£¬$\frac{4}{3}$£©¡È£¨$\frac{4}{3}$£¬+¡Þ£©C£®£¨1£¬2£©D£®£¨1£¬+¡Þ£©

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

20£®ÒÑÖªº¯Êýf£¨x£©=x3+x+1£¬Çó£º
£¨1£©f£¨x£©+f£¨-x£©µÄÖµ
£¨2£©f£¨-2015£©+f£¨-2014£©+¡­+f£¨-1£©+f£¨0£©+f£¨1£©+f£¨2£©+¡­+f£¨2014£©+f£¨2015£©µÄÖµ£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

1£®·½³Ìlgx+lgx3+lgx5+¡­+lgx2n-1=2n2µÄ½âΪx=100£®

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸