精英家教网 > 高中数学 > 题目详情
19.已知函数f(x)=loga(ax-1)(a>0,且a≠1).
(1)求函数f(x)的定义域;
(2若函数f(x)的函数值大于1,求x的取值范围.

分析 (1)利用真数大于0,求函数f(x)的定义域;
(2)若函数f(x)的函数值大于1,分类讨论求x的取值范围.

解答 解:(1)由题意可知ax-1>0,ax>1…(2分)
当a>1时,x>0,所以f(x)的定义域为(0,+∞)…(4分)
当0<a<1时,x<0,所以f(x)的定义域为(-∞,0)…(6分)
(2)loga(ax-1)>1,
当a>1时,ax-1>a,x>loga(a+1),…(8分)
当0<a<1时,ax-1<a,x>loga(a+1),…(10分)
因为f(x)的定义域为(-∞,0),所以0>x>loga(a+1)…(12分)

点评 本题考查函数的定义域,考查不等式的解法,考查对数函数的性质,正确转化是关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

9.设一组数据的方差是0.1,将这组数据的每个数据都乘以10,所得到的一组新数据的方差是(  )
A.10B.0.1C.0.001D.100

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.已知函数f(x)=lnx-$\frac{a(x-1)}{x+1}$.
(1)若函数f(x)在(1,+∞)上为单调递增函数,求实数a的取值范围;
(2)设m,n∈(0,+∞),且m≠n,求证:$\frac{m-n}{lnm-lnn}$-$\frac{m+n}{2}$<0.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.把半椭圆$\frac{x^2}{a^2}+\frac{y^2}{b^2}$=1(x≥0)与圆弧(x-c)2+y2=a2(x<0)合成的曲线称作“曲圆”,其中F(c,0)为半椭圆的右焦点.如图,A1,A2,B1,B2
分别是“曲圆”与x轴、y轴的交点,已知∠B1FB2=$\frac{2π}{3}$,扇形FB1A1B2的面
积为$\frac{4π}{3}$.
(1)求a,c的值; 
(2)过点F且倾斜角为θ的直线交“曲圆”于P,Q两点,试将△A1PQ的周长L表示为θ的函数;
(3)在(2)的条件下,当△A1PQ的周长L取得最大值时,试探究△A1PQ的面积是否为定值?若是,请求出该定值;若不是,请求出面积的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.已知函数f(x)=$\left\{\begin{array}{l}{-sin\frac{π}{2}x,-3≤x≤0}\\{|lo{g}_{2}x|.x>0}\end{array}\right.$,若方程f(x)=a有四个不同的解x1,x2,x3,x4,且x1<x2<x3<x4,则x3(x1+x2)+$\frac{1}{{x}_{3}^{2}{x}_{4}}$的取值范围为(  )
A.(-1,+∞)B.(-1,1)C.(-∞,1)D.[-1,1]

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.已知函数f(x)=$\left\{\begin{array}{l}{1+{3}^{x,x≥1}}\\{2x-1,x<1}\end{array}\right.$,则f[f(0)+2]等于(  )
A.2B.3C.4D.6

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.已知点P(2,0)及圆C:x2+y2-6x+4y+4=0.
(1)设过P直线l1与圆C交于M、N两点,当|MN|=4时,求以MN为直径的圆Q的方程;
(2)设直线ax-y+1=0与圆C交于A,B两点,是否存在实数a,使得过点P(2,0)的直线l2垂直平分弦AB?若存在,求出实数a的值;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.已知函数f(x)=x2-2ax+1.
(1)若对任意的实数x都有f(1+x)=f(1-x)成立,求实数 a的值;
(2)若f(x)在区间[1,+∞)上为单调递增函数,求实数a的取值范围;
(3)当x∈[-1,1]时,求函数f(x)的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.已知定义在(1,+∞)上的函数f(x)满足下列两个条件:(1)对任意的x∈(1,+∞)恒有f(2x)=2f(x)成立;(2)当x∈(1,2)时,f(x)=-x2+2x.记函数g(x)=f(x)-k(x-1),若函数g(x)恰有两个零点,则实数k的取值范围是(  )
A.[1,2)B.[$\frac{4}{3}$,2)C.($\frac{4}{3}$,2)D.[$\frac{4}{3}$,2]

查看答案和解析>>

同步练习册答案