精英家教网 > 高中数学 > 题目详情

设函数f(x)=数学公式sinxcosx+cos2x+a
(I)写出函数f(x)的最小正周期及单调递减区间;
(II)当x∈数学公式时,函数f(x)的最大值与最小值的和为数学公式,解不等式f(x)>1.

解:f(x)=sinxcosx+cos2x+a
=
=sin(2x+)+a+
(I)所以T=
,得
所以f(x)的单调递减区间是[](k∈Z).
(II)因为,所以
所以
当x时,f(x)max+f(x)min=(1+a+)+(-+a+)=
解得a=0,所以f(x)=sin(2x+)+
由f(x)>1得,
所以
解得
分析:由正余弦的倍角公式及正弦的和角公式把函数转化为y=Asin(ωx+φ)+B的形式;
(I)由y=Asin(ωx+φ)+B的性质易于解决;
(II)当x∈时,先表示出f(x)的最值,再解得a,最后结合正弦函数的图象解得答案.
点评:本题考查倍角公式、和角公式及函数y=Asin(ωx+φ)+B的性质,同时考查转化思想.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

设函数f(x)=sinx,g(x)=
1
x
,如图是函数F(x)图象的一部分,则F(x)是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2011•宝坻区一模)设函数f(x)=sinx+cos(x+
π
6
),x∈R.
(1)求函数f(x)的最小正周期及在区间[0,
π
2
]上的值域;
(2)记△ABC的内角A,B,C的对边分别为a,b,c,若f(A)=
3
2
,且a=
3
2
b,求角B的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

定义运算a*b为:a*b=
a(a≤b)
b(a>b)
,例如1*2=1,2*1=1,设函数f(x)=sinx*cosx,则函数f(x)的最小正周期为
,使f(x)>0成立的集合为
(2kπ,2kπ+
π
2
)
(2kπ,2kπ+
π
2
)

查看答案和解析>>

科目:高中数学 来源: 题型:

(2011•杭州一模)设函数f(x)=
sinx+cosx-|sinx-cosx|
2
(x∈R),若在区间[0,m]上方程f(x)=-
3
2
恰有4个解,则实数m的取值范围是
[
3
17π
6
)
[
3
17π
6
)

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•安徽)设函数f(x)=sinx+sin(x+
π3
).
(Ⅰ)求f(x)的最小值,并求使f(x)取得最小值的x的集合;
(Ⅱ)不画图,说明函数y=f(x)的图象可由y=sinx的图象经过怎样的变化得到.

查看答案和解析>>

同步练习册答案