精英家教网 > 高中数学 > 题目详情
15.2015年十一黄金周期间,渭南日报记者通过随机询问本市华山景区220名游客对景区的服务是否满意情况,得到如下的统计表:(单位:名)
总计
满意10060160
不满意204060
总计120100220
(Ⅰ)从这100名女游客中按对华山景区的服务是否满意采取分层抽样,抽取一个容量为5的样本,问样本中满意与不满意的女游客各有多少名?
(Ⅱ)从(Ⅰ)中的5名女游客样本中随机选取两名作深度访谈,求选出满意与不满意的女游客一名的概率;
(Ⅲ)根据以上统计表,问有多大把握认为“游客性别与对华山景区的服务满意”有关.
附:

P(K2≥K00.0500.0250.010
K03.8415.0246.635
K2=$\frac{n(ad-bc)^2}{(a+b)(c+d)(a+c)(b+d)}$.

分析 (I)每个个体被抽取的概率为$\frac{5}{100}$,根据分层抽样,即可得样本中满意的女游客,样本中不满意的女游客的人数;
(II)确定从这5名游客中随机选取两名的等可能事件的个数,其中事件A“选到满意与不满意的女游客各一名”包含6个基本事件,即可求得概率;
(III)由列联表,计算K2的值,根据P(K2>6.635)=0.010,即可得到结论.

解答 解:(I)根据分层抽样可得,样本中满意的女游客有$\frac{5}{100}×60$=3名,样本中不满意的女游客有5-3=2名;
(II)记样本中对景区的服务满意的3名女游客编号为1,2,3,对景区的服务不满意的2名游客编号为4,5,从这5名游客中随机选取两名,共有10个等可能事件为(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)
其中事件A“选到满意与不满意的女游客各一名”包含6个基本事件:(1,4),(1,5),(2,4),(2,5),(3,4),(3,5)
所以所求的概率为P(A)=$\frac{6}{10}$=$\frac{3}{5}$;
(III)由列联表可得K2═$\frac{539}{72}$≈14.97
∵P(K2>6.635)=0.010
∴有99%的把握认为“游客性别与对景区的服务满意”有关.

点评 本题考查分层抽样,考查等可能事件概率的求法,考查独立性检验知识,考查学生的计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

5.已知x,y满足约束条件$\left\{\begin{array}{l}{x-y≥0}\\{x+y≥0}\\{x≤3}\end{array}\right.$,则z=x+2y的最小值为(  )
A.-3B.-5C.-6D.-14

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.某四棱锥的三视图如图所示,则该四棱锥的侧面积是(  )
A.27B.30C.32D.36

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.下列函数中,是偶函数且在区间(0,+∞)上单调递减的函数是(  )
A.y=2xB.y=$\sqrt{x}$C.y=|x|D.y=-x2+1

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.已知复数z满足zi=1,则|z|=(  )
A.$\sqrt{2}$B.$\frac{\sqrt{2}}{2}$C.1D.$\frac{1}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.已知向量$\overrightarrow{a}$=(3,-2),$\overrightarrow{b}$=(x,y-1),且$\overrightarrow{a}$∥$\overrightarrow{b}$,若x,y均为正数,则$\frac{3}{x}$+$\frac{2}{y}$的最小值是8.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.定义平面上一点P到曲线C的距离为点P到曲线C上所有点距离的最小值,那么平面内到定圆的距离与到定点A的距离相等的点的轨迹不可能是(  )
A.B.椭圆C.双曲线的一支D.直线

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.下列四个判断:
①某校高三一班和高三二班的人数分别是m,n,某次测试数学平均分分别是a,b,则这两个班的数学的平均分为$\frac{a+b}{2}$;
②10名工人某天生产同一种零件,生产的件数是15,17,14,10,15,17,17,16,14,12,设其平均数为a,中位数为b,众数为c,则有c>a>b;
③设从总体中抽取的样本为(x1,y1),(x2,y2),…,(xn,yn),若记$\overline{x}$=$\frac{1}{n}$$\sum_{i=1}^{n}$xi,$\overline{y}$=$\frac{1}{n}$$\underset{\stackrel{n}{\;}}{i=1}$yi,则回归直线方程$\stackrel{∧}{y}$=bx+a必过点($\overline{x}$,$\overrightarrow{y}$); 
④已知ξ服从正态分布N(0,σ2),且P(-2≤ξ≤0)=0.4,则P(ξ>2)=0.2.
其中正确判断的个数有(  )
A.0个B.1个C.2个D.3个

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.一个直棱柱被一个平面截去一部分后,剩余部分的三视图如图所示,则该剩余部分的体积为$\frac{8}{3}$.

查看答案和解析>>

同步练习册答案