分析 (1)分类讨论,利用C到l的距离d=1,即可求直线l的方程;
(2)表示出面积,利用基本不等式,即可得出结论.
解答 解:(1)当直线l与x轴垂直时,易知x=-1符合题意;…(2分)
当直线与x轴不垂直时,设直线l的方程为y=k(x+1),
由于|PQ|=2$\sqrt{3}$,
所以C到l的距离d=$\sqrt{4-(\frac{|PQ|}{2})^{2}}$=1
由$\frac{|-k+3|}{\sqrt{{k}^{2}+1}}$=1,解得k=$\frac{4}{3}$.…(4分)
故直线l的方程为x=-1或4x-3y+4=0.…(6分)
(2)设C到直线l的距离为d,则|PQ|=2$\sqrt{4-{d}^{2}}$,…(7分)
∴△CPQ面积S=$\frac{1}{2}d•|PQ|$=d$\sqrt{4-{d}^{2}}$≤$\frac{{d}^{2}+4-{d}^{2}}{2}$=2,…(9分)
当且仅当d2=4-d2,即d=$\sqrt{2}$时,等号成立,
当l与x轴垂直时,不合题意;…(10分)
当l的斜率存在时,设直线l的方程为y=k(x+1),d=$\frac{|k-3|}{\sqrt{{k}^{2}+1}}$=$\sqrt{2}$
解得:k=-7或k=1,…(11分)
∴直线l的方程是:7x+y+7=0或x-y+1=0. …(12分)
点评 此题考查了直线与圆相交的性质,涉及的知识有:点到直线的距离公式,三角形的面积公式,圆的标准方程,以及直线的点斜式方程,是一道多知识点的综合题.
科目:高中数学 来源: 题型:选择题
| A. | f(x)g(x)是奇函数 | B. | f(g(x))是奇函数 | C. | g(f(x))是偶函数 | D. | |f(x)|g(x)偶函数 |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | {4,6} | B. | {1,2,3,5} | C. | {2,4,6} | D. | {2,4,5,6} |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com