精英家教网 > 高中数学 > 题目详情
如图,设P是圆x2+y2=25上的动点,点D是P在x轴上的投影,M为PD上一点,且|MD|=|PD|,当P在圆上运动时,求点M的轨迹C的方程。

试题分析:这是一道典型的关于轨迹问题的题目,通常的解法:①设出所求轨迹点的坐标;②找出已知点的坐标与其之间的等量关系;③代入已知点的轨迹方程;④求出所求点的轨迹方程.在此题的解答过程中,可以先设出所求点的坐标,已知点的坐标,由“点轴上的投影”且“”得到点与点坐标之间的等量关系,又由于点是已知圆上的点,将其坐标代入圆方程,经整理即可得到所点的轨迹方程.
试题解析:设的坐标为的坐标为,则由已知得    5分
因为点在圆上,所以,即所求点的轨迹的方程为.  10分
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

已知椭圆的离心率为,且经过点. 过它的两个焦点分别作直线交椭圆于A、B两点,交椭圆于C、D两点,且

(1)求椭圆的标准方程;
(2)求四边形的面积的取值范围.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

若曲线为焦点在轴上的椭圆,则实数,满足(  )
A.B.C.D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

已知F1、F2是椭圆=1(a>b>0)的左右焦点,P是椭圆上一点,∠F1PF2=90°,求椭圆离心率的最小值为          

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

已知抛物线与椭圆有相同的焦点是两曲线的公共点,若,则此椭圆的离心率为         

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

是曲线上的点,,则必有 (  )
A.B.
C.D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

已知椭圆的左、右焦点分别为,若椭圆上存在点P使,则该椭圆的离心率的取值范围为___   

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本小题满分12分)已知圆M:(x+1)2+y2=1,圆N:(x-1)2+y2=9,动圆P与圆M外切并与圆N内切,圆心P的轨迹为曲线 C
(Ⅰ)求C的方程;
(Ⅱ)l是与圆P,圆M都相切的一条直线,l与曲线C交于A,B两点,当圆P的半径最长时,求|AB|.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

若点P是以F1,F2为焦点的椭圆=1(a>b>0)上一点,且·=0,tan∠PF1F2则此椭圆的离心率e=(   )
A.B.C.D.

查看答案和解析>>

同步练习册答案