(本小题满分10分)
已知△ABC的三边长都是有理数。
求证cosA是有理数;(2)求证:对任意正整数n,cosnA是有理数。
[解析] 本题主要考查余弦定理、数学归纳法等基础知识,考查推理论证的能力与分析问题、解决问题的能力。满分10分。
(方法一)(1)证明:设三边长分别为
,
,∵
是有理数,
是有理数,分母
为正有理数,又有理数集对于除法的具有封闭性,
∴
必为有理数,∴cosA是有理数。
(2)①当
时,显然cosA是有理数;
当
时,∵
,因为cosA是有理数, ∴
也是有理数;
②假设当
时,结论成立,即coskA、
均是有理数。
当
时,
,
,
,
解得:![]()
∵cosA,
,
均是有理数,∴
是有理数,
∴
是有理数。
即当
时,结论成立。
综上所述,对于任意正整数n,cosnA是有理数。
(方法二)证明:(1)由AB、BC、AC为有理数及余弦定理知
是有理数。
(2)用数学归纳法证明cosnA和
都是有理数。
①当
时,由(1)知
是有理数,从而有
也是有理数。
②假设当
时,
和
都是有理数。
当
时,由
,
,
及①和归纳假设,知
和
都是有理数。
即当
时,结论成立。
综合①、②可知,对任意正整数n,cosnA是有理数。
科目:高中数学 来源: 题型:
|
|
| 1 |
| 2a |
| 1 |
| 2b |
| 1 |
| 2c |
| 1 |
| b+c |
| 1 |
| c+a |
| 1 |
| a+b |
查看答案和解析>>
科目:高中数学 来源: 题型:
|
查看答案和解析>>
科目:高中数学 来源: 题型:
查看答案和解析>>
科目:高中数学 来源: 题型:
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com