精英家教网 > 高中数学 > 题目详情
设函数f(x)=
3
cos2ωx+sinωxcosωx+α
(其中ω>0,α∈R),且f(x)的图象在y轴右侧的第一个最高点的横坐标为
π
6

(I)求ω的值.
(II)如果f(x)在区间[-
π
3
6
]
上的最小值为
3
,求α的值.
分析:(I)先用三角恒等式将函数f(x)表达式化简,再将最高点的坐标代入即可求出ω的值.
(II)利用三角函数的性质求出f(x)在区间[-
π
3
6
]
上的最小值表达式,令其值为
3
,即可解出参数的值.
解答:解:(I)f(x)=
3
2
cos2ωx+
1
2
sin2ωx+
3
2

=sin(2ωx+
π
3
)+
3
2

依题意得2ω×
π
6
+
π
3
=
π
2

解之得ω=
1
2

(II)由(I)知f(x)=sin(x+
π
3
)+
3
2

又当x∈[-
π
3
6
]时,x+
π
3
∈[0,
6
]
故-
1
2
≤sin(x+
π
3
)≤1,
从而,f(x)在[-
π
3
6
]上取得最小值-
1
2
+
3
2

因此,由题设知-
1
2
+
3
2
+α=
3

解得α=
3
+1
2

答:(I)ω=
1
2
;(II)α=
3
+1
2
点评:考查三角函数的图象与性质,先用性质求参数的值,再由函数的单调性判断出函数的最小值的参数表达式,建立关于参数的方程,求出相应的参数.本题可以培养答题者运用知识灵活转化的能力.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

设函数f(x)=
x
,x≥0
-x
,x<0
,若f(a)+f(-1)=2,则a=(  )
A、-3B、±3C、-1D、±1

查看答案和解析>>

科目:高中数学 来源: 题型:

设函数f(x)=
2-x,x∈(-∞,1]
log81x,x∈(1,+∞)
则满f(x)=
1
4
的x的值(  )
A、只有2B、只有3
C、2或3D、不存在

查看答案和解析>>

科目:高中数学 来源: 题型:

设函数f(x)=asinx-bcosx在x=
π
3
处有最小值-2,则常数a,b的值分别为
(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

设函数f(x)=
1
2
cos(ωx+φ)
,对任意x∈R都有f(
π
3
-x)
=f(
π
3
+x)
,若函数g(x)=3sin(ωx+φ)-2,则g(
π
3
)
的值为(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

设函数f(x)=sin(ωx+?)(ω>0,0<?<
π
2
)
.若将f(x)的图象沿x轴向右平移
1
6
个单位长度,得到的图象经过坐标原点;若将f(x)的图象上所有的点的横坐标缩短到原来的
1
2
倍(纵坐标不变),得到的图象经过点(
1
6
,1)
,则(  )
A、ω=π,?=
π
6
B、ω=2π,?=
π
3
C、ω=
4
,?=
π
8
D、适合条件的ω,?不存在

查看答案和解析>>

同步练习册答案