精英家教网 > 高中数学 > 题目详情

【题目】已知动直线l:(m+3)x-(m+2)ym=0与圆C:(x-3)2+(y-4)2=9.

(1)求证:无论m为何值,直线l与圆C总相交.

(2)求直线l被圆C所截得的弦长的最小值.

【答案】(1)见解析(2)

【解析】试题分析:(1)方法一:设圆心C(3,4)到动直线l的距离为d,利用点到直线的距离公式可得圆心到直线的距离d,只要证明dr即可;

方法二 直线l变形为m(x﹣y+1)+(3x﹣2y)=0.利用直线系过定点,若定点在圆的内部即可;

(2)利用垂径定理和弦长公式即可得出.

试题解析:

(1)证明 方法一 设圆心C(3,4)到动直线l的距离为d,

d=

∴当m=-时,dmax<3(半径).故动直线l总与圆C相交.

方法二 直线l变形为m(x-y+1)+(3x-2y)=0.

解得故动直线l恒过定点A(2,3).

|AC|=<3(半径).∴点A在圆内,故无论m取何值,直线l与圆C总相交.

(2)解 由平面几何知识知,弦心距越大,弦长越小,即当AC垂直直线l时,弦长最小.

∴最小值为2=2

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】若点(p,q),在|p|≤3,|q|≤3中按均匀分布出现.试求方程x2+2px﹣q2+1=0有两个实数根的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数

(1)求曲线与直线垂直的切线方程;

(2)求的单调递减区间

(3)若存在使函数成立求实数的取值范围

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数上是奇函数.

1)求

2)对,不等式恒成立,求实数的取值范围;

3)令,若关于的方程有唯一实数解,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】甲乙两个同学进行定点投篮游戏,已知他们一次投篮中的概率均为,且各次投篮的结果互不影响.甲同学决定投5次,乙同学决定投中1次就停止,否则就继续投下去,但投篮次数不超过5次.

(1)甲同学至少有4次投中的概率

(2)乙同学投篮次数的分布列和数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图:在直角梯形 ,把沿折到的位置,使.

(Ⅰ)求证: 平面

(Ⅱ)求平面与平面的所夹的锐二面角的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】当今信息时代,众多高中生也配上了手机.某校为研究经常使用手机是否对学习成绩有影响,随机抽取高三年级50名理科生的一次数学周练成绩,用茎叶图表示如下图:

(1)根据茎叶图中的数据完成下面的列联表,并判断是否有95%的把握认为经常使用手机对学习成绩有影响?

及格(

不及格

合计

很少使用手机

经常使用手机

合计

(2)从50人中,选取一名很少使用手机的同学记为甲和一名经常使用手机的同学记为乙,解一道数列题,甲、乙独立解决此题的概率分别为 ,若,则此二人适合结为学习上互帮互助的“师徒”,记为两人中解决此题的人数,若,问两人是否适合结为“师徒”?

参考公式及数据: ,其中.

<>0.10

0.05

0.025

2.706

3.841

5.024

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知是常数.

(Ⅰ)求曲线在点处的切线方程;

(Ⅱ)设,讨论函数的单调性.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在某次测试后,一位老师从本班48同学中随机抽取6位同学,他们的语文、历史成绩如表:

学生编号

1

2

3

4

5

6

语文成绩

60

70

74

90

94

110

历史成绩

58

63

75

79

81

88

(Ⅰ)若规定语文成绩不低于90分为优秀,历史成绩不低于80分为优秀,以频率作概率,分别估计该班语文、历史成绩优秀的人数;

(Ⅱ)用表中数据画出散点图易发现历史成绩与语文成绩具有较强的线性相关关系,求的线性回归方程(系数精确到0.1).

参考公式:回归直线方程是,其中

查看答案和解析>>

同步练习册答案