精英家教网 > 高中数学 > 题目详情
(2013•河池模拟)一个四面体A-BCD中,AC=BD=3,AD=BC=4,AB=CD=5,那么这个四面体的外接球的表面积为(  )
分析:由四面体A-BCD相对的棱长度相等,将其放置于长方体中,如图所示.由题意得该长方体的外接球就是四面体A-BCD的外接球,因此算出长方体的对角线长得到外接球的直径,利用球的表面积公式加以计算,可得四面体A-BCD的外接球的表面积.
解答:解:将四面体A-BCD放置于长方体中,如图所示.
∵四面体A-BCD的顶点为长方体八个顶点中的四个,
∴长方体的外接球就是四面体A-BCD的外接球,
∵AC=BD=3,AD=BC=4,AB=CD=5,
∴长方体的对角线长为
1
2
(32+42+52)
=5,
可得外接球的直径2R=5,所以R=
5
2

因此,外接球的表面积为S=4πR2=25π.
故选:B
点评:本题给出相对棱长相等的四面体,求它的外接球的表面积.着重考查了长方体的性质、长方体的对角线长公式和球的表面积公式等知识,属于中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(2013•河池模拟)已知函数f(x)的导函数f′(x)的图象如图所示,那么函数f(x)的图象最有可能的是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•河池模拟)已知数列{an}满足a1=1,a2=3,an+2=3an+1-2an(n∈N+
(1)证明:数列{an+1-an }是等比数列;
(2)求数列{an}的通项公式.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•河池模拟)在如图所示的四棱锥P-ABCD中,已知 PA⊥平面ABCD,AB∥DC,∠DAB=90°,PA=AD=DC=1,AB=2,M为PB的中点.
(Ⅰ)求证:MC∥平面PAD;
(Ⅱ)求证:平面PAC⊥平面PBC;
(Ⅲ)求直线MC与平面PAC所成角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•河池模拟)已知函数f(x)满足下面关系:(1)f(x+
π
2
)=f(x-
π
2
)
(2)当x∈(0,π]时 f(x)=-cosx
给出下列四个命题:
①函数f(x)为周期函数      
②函数f(x)为奇函数
③函数f(x)的图象关于y轴对称  
④方程f(x)=lg|x|的解的个数是8
其中正确命题的序号是:
①④
①④
(把正确命题的序号都填上)

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•河池模拟)函数f(x)=Asin(ωx+
π
6
)(ω>0)
的图象与x轴的交点的横坐标构成一个公差为
π
2
的等差数列,要得到函数g(x)=Asinωx的国像,只需将f(x)的图象向右平移
π
12
π
12
个单位.

查看答案和解析>>

同步练习册答案