函数
在
时的最小值为( ).
A.2 B.4 C.6 D.8
科目:高中数学 来源: 题型:
查看答案和解析>>
科目:高中数学 来源:2012-2013学年浙江省高考模拟冲刺(提优)测试二理科数学试卷(解析版) 题型:解答题
已知函数
(常数
)在
处取得极大值M.
(Ⅰ)当M=
时,求
的值;
(Ⅱ)记
在
上的最小值为N,若
,求
的取值范围.
查看答案和解析>>
科目:高中数学 来源:2013届甘肃兰州一中高二下学期期中考试理科数学试卷(解析版) 题型:解答题
已知函数
,其中
.
(1)若
在
处取得极值,求曲线
在点
处的切线方程;
(2)讨论函数
在
的单调性;
(3)若函数
在
上的最小值为2,求
的取值范围.
【解析】第一问,
因
在
处取得极值
所以,
,解得
,此时
,可得求曲线
在点
处的切线方程为:![]()
第二问中,易得
的分母大于零,
①当
时,
,函数
在
上单调递增;
②当
时,由
可得
,由
解得![]()
第三问,当
时由(2)可知,
在
上处取得最小值
,
当
时由(2)可知
在
处取得最小值
,不符合题意.
综上,函数
在
上的最小值为2时,求
的取值范围是![]()
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com