精英家教网 > 高中数学 > 题目详情

设函数上满足,且在闭区间[0,7]上,只有

(Ⅰ)试判断函数的奇偶性;

(Ⅱ)试求方程=0在闭区间[-2005,2005]上的根的个数,并证明你的结论.

.解:由f(2-x)=f(2+x),f(7-x)=f(7+x)得函数的对称轴为,

从而知函数不是奇函数,

,从而知函数的周期为

,故函数是非奇非偶函数;

(II)由

(II) 又

故f(x)在[0,10]和[-10,0]上均有有两个解,从而可知函数在[0,2005]上有402个解,在[-2005.0]上有400个解,所以函数在[-2005,2005]上有802个解.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(05年广东卷)(14分)

设函数上满足,且在闭区间[0,7]上,只有

(Ⅰ)试判断函数的奇偶性;

(Ⅱ)试求方程在闭区间上的根的个数,并证明你的结论.

查看答案和解析>>

科目:高中数学 来源: 题型:

设函数上满足, 且在闭区间[0, 7]上只有.

⑴试判断函数的奇偶性;

⑵试求方程在闭区间上的根的个数, 并证明你的结论.

查看答案和解析>>

科目:高中数学 来源: 题型:

19.设函数上满足,且在闭区间[0,7]上,只有

(Ⅰ)试判断函数的奇偶性;

(Ⅱ)试求方程=0在闭区间[-2005,2005]上的根的个数,并证明你的结论.

查看答案和解析>>

科目:高中数学 来源: 题型:

设函数上满足,且在闭区间上,仅有两个根,则方程在闭区间上根的个数有

查看答案和解析>>

同步练习册答案