精英家教网 > 高中数学 > 题目详情
5.已知抛物线y=x2在点A(2,4)处的切线为m.
(1)求切线m的方程;
(2)若切线m经过椭圆$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)的一个焦点和顶点,求该椭圆的方程.

分析 (1)求函数的导数,利用导数的几何意义确定切线的斜率.
(2)求出切线与x轴、y轴的交点,即可求c,b,a

解答 解:(1)由y=x2,得:y′=2x,∴y′|x=2=-4,
所以,抛物线y=x2在点(2,4)处的切线方程为y-4=4(x-2),即y=4x-4.
切线m的方程:y=4x-4;
(2)切线m的方程:y=4x-4,交x轴于点A(I,0),即椭圆的焦点(1,0),
交y轴于点B(0,-4),即椭圆下顶点(0,-4)
∴c=1,b=4,a=$\sqrt{17}$,
∴椭圆的方程:$\frac{{x}^{2}}{17}+\frac{{y}^{2}}{16}=1$

点评 本题考查了函数的切线方程,及椭圆的方程,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

15.已知|$\overrightarrow{a}$|=6,|$\overrightarrow{b}$|=4,$\overrightarrow{a}$与$\overrightarrow{b}$的夹角为60°,则3$\overrightarrow{a}$•$\overrightarrow{b}$=36.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.已知椭圆C1:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)与双曲线C2:$\frac{{x}^{2}}{{m}^{2}}$-$\frac{{y}^{2}}{{n}^{2}}$=1(m>0,n>0)有相同的焦点F1,F2,点P是两曲线的一个公共点,且PF1⊥PF2,e1,e2分别是两曲线C1,C2的离心率,则2e12+$\frac{{e}_{2}^{2}}{2}$的最小值为(  )
A.1B.$\frac{9}{4}$C.4D.$\frac{9}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.在平面直角坐标系xOy中,已知点Q(1,2),P是动点,且△POQ的三边所在直线的斜率满足$\frac{1}{{k}_{op}}$+$\frac{1}{{k}_{OQ}}$=$\frac{1}{{k}_{PQ}}$.
(1)求点P的轨迹C的方程;
(2)过点F(1,0)作倾斜角为60°的直线L,交曲线C于A,B两点,求△AOB的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.设抛物线y2=4x有内接三角形OAB,其垂心(三条边上的高所在直线的交点)恰为抛物线的焦点,求这个三角形的周长.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.如图,BC为圆O的直径,D为圆周上异于B、C的一点,AB垂直于圆O所在的平面,BE⊥AC于点E,BF⊥AD于点F.
(Ⅰ)求证:BF⊥平面ACD;
(Ⅱ)若AB=BC=2,∠CBD=45°,
①求直线BC与平面BEF所成的角
②求四面体BDEF的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.已知函数g(x)=$\frac{lnx}{x}$.
(Ⅰ)求函数y=g(x)的图象在x=$\frac{1}{e}$处的切线方程;
(Ⅱ)求y=g(x)的最大值;
(Ⅲ)令f(x)=ax2+bx-x•(g(x))(a,b∈R).若a≥0,求f(x)的单调区间.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.计算${∫}_{0}^{2}$($\sqrt{4-{x}^{2}}$+x2)dx的结果是π+$\frac{8}{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.已知数列{an}中,a1=2,an+1=2an+3•2n,则数列{an}的通项公式an=(3n-1)•2n-1

查看答案和解析>>

同步练习册答案