ÒÑÖªÀëÐÄÂÊΪ
3
2
µÄÍÖÔ²C1µÄ¶¥µãA1£¬A2Ç¡ºÃÊÇË«ÇúÏß
x2
3
-y2=1
µÄ×óÓÒ½¹µã£¬µãPÊÇÍÖÔ²Éϲ»Í¬ÓÚA1£¬A2µÄÈÎÒâÒ»µã£¬ÉèÖ±ÏßPA1£¬PA2µÄбÂÊ·Ö±ðΪk1£¬k2£®
£¨¢ñ£©ÇóÍÖÔ²C1µÄ±ê×¼·½³Ì£»
£¨¢ò£©ÊÔÅжÏk1•k2µÄÖµÊÇ·ñÓëµãPµÄλÖÃÓйأ¬²¢Ö¤Ã÷ÄãµÄ½áÂÛ£»
£¨¢ó£©µ±k1=
1
2
ʱ£¬Ô²C2£ºx2+y2-2mx=0±»Ö±ÏßPA2½ØµÃÏÒ³¤Îª
4
5
5
£¬ÇóʵÊýmµÄÖµ£®
Éè¼ÆÒâͼ£º¿¼²ìÖ±ÏßÉÏÁ½µãµÄбÂʹ«Ê½¡¢Ö±ÏßÓëÔ²Ïཻ¡¢´¹¾¶¶¨Àí¡¢Ë«ÇúÏßÓëÍÖÔ²µÄ¼¸ºÎÐÔÖʵÈ֪ʶ£¬¿¼²ìѧÉúÓôý¶¨ÏµÊý·¨ÇóÍÖÔ²·½³ÌµÈ½âÎö¼¸ºÎµÄ»ù±¾Ë¼ÏëÓëÔËËãÄÜÁ¦¡¢Ì½¾¿ÄÜÁ¦ºÍÍÆÀíÄÜÁ¦£®µÚ£¨¢ò£©¸Ä±à×ÔÈ˽ÌÉçÑ¡ÐÞ2-1½Ì²ÄP39Àý3£®
·ÖÎö£º£¨¢ñ£©ÏÈÀûÓÃÍÖÔ²C1µÄ¶¥µãA1£¬A2Ç¡ºÃÊÇË«ÇúÏß
x2
3
-y2=1
µÄ×óÓÒ½¹µãÇó³ö¶¥µãA1£¬A2µÄ×ø±ê£¬ÔÙÀûÓÃÀëÐÄÂÊΪ
3
2
¼´¿ÉÇóÍÖÔ²C1µÄ±ê×¼·½³Ì£»
£¨¢ò£©Ö±½ÓÀûÓÃÁ½µã×ø±êÇó³ök1•k2µÄÖµ¼´¿ÉÅжÏk1•k2µÄÖµÊÇ·ñÓëµãPµÄλÖÃÓйأ»
£¨¢ó£©ÏÈÀûÓ㨢ò£©µÄ½áÂÛÇó³öÖ±ÏßPA2µÄ·½³Ì£¬ÔÙÀûÓÃÔ²Ðĵ½Ö±ÏߵľàÀëÒÔ¼°ÏÒ³¤ºÍ°ë¾¶Ö®¼äµÄ¹Øϵ¼´¿ÉÇóʵÊýmµÄÖµ£®
½â´ð£º½â£º£¨¢ñ£©Ë«ÇúÏß
x2
3
-y2=1
µÄ×óÓÒ½¹µãΪ£¨¡À2£¬0£©
¼´A1£¬A2µÄ×ø±ê·Ö±ðΪ£¨-2£¬0£©£¬£¨2£¬0£©£®£¨1·Ö£©
ËùÒÔÉèÍÖÔ²C1µÄ±ê×¼·½³ÌΪ
x2
a2
+
y2
b2
=1(a£¾b£¾0)
£¬Ôòa=2£¬£¨2·Ö£©
ÇÒe=
c
a
=
3
2
£¬ËùÒÔc=
3
£¬´Ó¶øb2=a2-c2=1£¬£¨4·Ö£©
ËùÒÔÍÖÔ²C1µÄ±ê×¼·½³ÌΪ
x2
4
+
y2
1
=1
£®£¨5·Ö£©

£¨¢ò£©ÉèP£¨x0£¬y0£©Ôò
x02
4
+
y02
1
=1
£¬¼´y02=1-
x02
4
=
4-x02
4
£¨6·Ö£©
k1k2=
y0-0
x0-(-2)
y0-0
x0-2
=
y02
x02-4
=-
1
4
£®£¨8·Ö£©
ËùÒÔk1•k2µÄÖµÓëµãPµÄλÖÃÎ޹أ¬ºãΪ-
1
4
£® £¨9·Ö£©

£¨¢ó£©ÓÉÔ²C2£ºx2+y2-2mx=0µÃ£¨x-m£©2+y2=m2£¬
ÆäÔ²ÐÄΪC2£¨m£¬0£©£¬°ë¾¶Îª|m|£¬£¨10·Ö£©
ÓÉ£¨¢ò£©Öªµ±k1=
1
2
ʱ£¬k2=-
1
2
£¬
¹ÊÖ±ÏßPA2µÄ·½³ÌΪy=-
1
2
(x-2)
¼´x+2y-2=0£¬£¨11·Ö£©
ËùÒÔÔ²ÐÄΪC2£¨m£¬0£©µ½Ö±ÏßPA2µÄ¾àÀëΪd=
|m+2¡Á0-2|
12+22
=
|m-2|
5
£¬
ÓÖÓÉÒÑÖªÔ²C2£ºx2+y2-2mx=0±»Ö±ÏßPA2½ØµÃÏÒ³¤Îª
4
5
5
¼°´¹¾¶¶¨ÀíµÃ
Ô²ÐÄC2£¨m£¬0£©µ½Ö±ÏßPA2µÄ¾àÀëd=
m2-(
2
5
5
)
2
£¬
ËùÒÔ
m2-(
2
5
5
)
2
=
|m-2|
5
£¬¼´m2+m-2=0£¬½âµÃm=-2»òm=1£®£¨13·Ö£©
ËùÒÔʵÊýmµÄֵΪ1»ò-2£®£¨14·Ö£©£®
µãÆÀ£º±¾ÌâÖ÷Òª¿¼²éÖ±ÏßÉÏÁ½µãµÄбÂʹ«Ê½¡¢Ö±ÏßÓëÔ²Ïཻ¡¢´¹¾¶¶¨Àí¡¢Ë«ÇúÏßÓëÍÖÔ²µÄ¼¸ºÎÐÔÖʵÈ֪ʶ£¬¿¼²éѧÉúÓôý¶¨ÏµÊý·¨ÇóÍÖÔ²·½³ÌµÈ½âÎö¼¸ºÎµÄ»ù±¾Ë¼ÏëÓëÔËËãÄÜÁ¦¡¢Ì½¾¿ÄÜÁ¦ºÍÍÆÀíÄÜÁ¦£®
Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

£¨2013•»³»¯ÈýÄ££©ÒÑÖªÍÖÔ²C£º
x2
a2
+
y2
b2
=1(a£¾b£¾0)
¹ýµã(
3
£¬
3
2
)
£¬ÀëÐÄÂÊe=
1
2
£¬ÈôµãM£¨x0£¬y0£©ÔÚÍÖÔ²CÉÏ£¬ÔòµãN(
x0
a
£¬
y0
b
)
³ÆΪµãMµÄÒ»¸ö¡°Íֵ㡱£¬Ö±Ïßl½»ÍÖÔ²CÓÚA¡¢BÁ½µã£¬ÈôµãA¡¢BµÄ¡°Íֵ㡱·Ö±ðÊÇP¡¢Q£¬ÇÒÒÔPQΪֱ¾¶µÄÔ²¾­¹ý×ø±êÔ­µãO£®
£¨1£©ÇóÍÖÔ²CµÄ·½³Ì£»
£¨2£©ÈôÍÖÔ²CµÄÓÒ¶¥µãΪD£¬É϶¥µãΪE£¬ÊÔ̽¾¿¡÷OABµÄÃæ»ýÓë¡÷ODEµÄÃæ»ýµÄ´óС¹Øϵ£¬²¢Ö¤Ã÷£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

Èçͼ£¬F1£¬F2ΪÍÖÔ²C£º
x2
a2
+
y2
b2
=1
£¨a£¾b£¾0£©µÄ×ó¡¢ÓÒ½¹µã£¬D£¬EÊÇÍÖÔ²µÄÁ½¸ö¶¥µã£¬ÍÖÔ²µÄÀëÐÄÂÊe=
3
2
£¬S¡÷DEF2=1-
3
2
£®ÈôµãM£¨x0£¬y0£©ÔÚÍÖÔ²CÉÏ£¬ÔòµãN£¨
x0
a
£¬
y0
b
£©³ÆΪµãMµÄÒ»¸ö¡°Íֵ㡱£®Ö±ÏßlÓëÍÖÔ²½»ÓÚA£¬BÁ½µã£¬A£¬BÁ½µãµÄ¡°Íֵ㡱·Ö±ðΪP£¬Q£¬ÒÑÖªÒÔPQΪֱ¾¶µÄÔ²¾­¹ý×ø±êÔ­µãO£®
£¨1£©ÇóÍÖÔ²CµÄ±ê×¼·½³Ì£»
£¨2£©¡÷AOBµÄÃæ»ýÊÇ·ñΪ¶¨Öµ£¿ÈôΪ¶¨Öµ£¬ÊÔÇó³ö¸Ã¶¨Öµ£»Èô²»Îª¶¨Öµ£¬Çë˵Ã÷ÀíÓÉ£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

£¨2013•»³»¯¶þÄ££©ÈçͼչʾÁËÒ»¸öÓÉÇø¼ä£¨0£¬k£©£¨ÆäÖÐkΪһÕýʵÊý£©µ½ÊµÊý¼¯RÉϵÄÓ³Éä¹ý³Ì£ºÇø¼ä£¨0£¬k£©ÖеÄʵÊým¶ÔÓ¦Ï߶ÎABÉϵĵãM£¬Èçͼ1£»½«Ï߶ÎABΧ³ÉÒ»¸öÀëÐÄÂÊΪ
3
2
µÄÍÖÔ²£¬Ê¹Á½¶ËµãA¡¢BÇ¡ºÃÖغÏÓÚÍÖÔ²µÄÒ»¸ö¶ÌÖá¶Ëµã£¬Èçͼ2£»ÔÙ½«Õâ¸öÍÖÔ²·ÅÔÚƽÃæÖ±½Ç×ø±êϵÖУ¬Ê¹ÆäÖÐÐÄÔÚ×ø±êÔ­µã£¬³¤ÖáÔÚxÖáÉÏ£¬ÒÑÖª´ËʱµãAµÄ×ø±êΪ£¨0£¬1£©£¬Èçͼ3£¬ÔÚͼÐα仯¹ý³ÌÖУ¬Í¼1ÖÐÏ߶ÎAMµÄ³¤¶È¶ÔÓ¦ÓÚͼ3ÖеÄÍÖÔ²»¡ADMµÄ³¤¶È£®Í¼3ÖÐÖ±ÏßAMÓëÖ±Ïßy=-2½»ÓÚµãN£¨n£¬-2£©£¬ÔòÓëʵÊým¶ÔÓ¦µÄʵÊý¾ÍÊÇn£¬¼Ç×÷f£¨m£©=n£¬

ÏÖ¸ø³öÏÂÁÐ5¸öÃüÌâ¢Ùf(
k
2
)=6
£»¢Úº¯Êýf£¨m£©ÊÇÆ溯Êý£»¢Ûº¯Êýf£¨m£©ÔÚ£¨0£¬k£©Éϵ¥µ÷µÝÔö£»¢Üº¯Êýf£¨m£©µÄͼÏó¹ØÓÚµã(
k
2
£¬0)
¶Ô³Æ£»¢Ýº¯Êýf(m)=3
3
ʱAM¹ýÍÖÔ²µÄÓÒ½¹µã£®ÆäÖÐËùÓеÄÕæÃüÌâÊÇ£¨¡¡¡¡£©

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º»³»¯ÈýÄ£ ÌâÐÍ£º½â´ðÌâ

ÒÑÖªÍÖÔ²C£º
x2
a2
+
y2
b2
=1(a£¾b£¾0)
¹ýµã(
3
£¬
3
2
)
£¬ÀëÐÄÂÊe=
1
2
£¬ÈôµãM£¨x0£¬y0£©ÔÚÍÖÔ²CÉÏ£¬ÔòµãN(
x0
a
£¬
y0
b
)
³ÆΪµãMµÄÒ»¸ö¡°Íֵ㡱£¬Ö±Ïßl½»ÍÖÔ²CÓÚA¡¢BÁ½µã£¬ÈôµãA¡¢BµÄ¡°Íֵ㡱·Ö±ðÊÇP¡¢Q£¬ÇÒÒÔPQΪֱ¾¶µÄÔ²¾­¹ý×ø±êÔ­µãO£®
£¨1£©ÇóÍÖÔ²CµÄ·½³Ì£»
£¨2£©ÈôÍÖÔ²CµÄÓÒ¶¥µãΪD£¬É϶¥µãΪE£¬ÊÔ̽¾¿¡÷OABµÄÃæ»ýÓë¡÷ODEµÄÃæ»ýµÄ´óС¹Øϵ£¬²¢Ö¤Ã÷£®

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸