| A. | (-∞,-1)∪(2,+∞) | B. | (-2,1) | C. | (-1,2) | D. | (一∞,-2)∪(1,+∞) |
分析 先判断出f(x)=x2+2x=(x+1)2-1在(0,+∞)上单调递增,根据奇函数的对称区间上的单调性可知,f(x)在(-∞,0)上单调递增,从而可比较2-a2与a的大小,解不等式可求a的范围.
解答 解:∵f(x)=x2+2x=(x+1)2-1在(0,+∞)上单调递增,
又∵f(x)是定义在R上的奇函数,
根据奇函数的对称区间上的单调性可知,f(x)在(-∞,0)上单调递增,
∴f(x)在R上单调递增.
∵f(2-a2)>f(a),
∴2-a2>a,
解不等式可得,-2<a<1,
故选B.
点评 本题主要考查了奇函数在对称区间上的单调性相同(偶函数对称区间上的单调性相反)的性质的应用,
一元二次不等式的求解,属于基础试题.
科目:高中数学 来源: 题型:选择题
| A. | B. | C. | D. |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
| 月份 | 一月 | 二月 | 三月 | 合计 |
| 缴费金额 | 82元 | 64元 | 46.8元 | 192.8元 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 2π | B. | 4π | C. | $\sqrt{6}$π | D. | 6π |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | [一l,+∞) | B. | (一1,+∞) | C. | (一∞,一1] | D. | (一∞,一l) |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com