精英家教网 > 高中数学 > 题目详情
已知:函数f(x)=
x2+4
x

(1)求:函数f(x)的定义域;
(2)判断函数f(x)的奇偶性并说明理由;
(3)判断函数f(x)在(-∞,-2)上的单调性,并用定义加以证明.
(1)定义域:(-∞,0)∪(0,+∞);
(2)定义域关于原点对称,
f(-x)=
(-x)2+4
-x
=-
x2+4
x
=-f(-x)

则:函数f(x)是奇函数;
(3)判断:函数f(x)在(-∞,-2)上是增函数,
证明:任取x1,x2∈(-∞,-2)且x1<x2f(x1)-f(x2)=
x12+4
x1
-
x22+4
x2
=
(x1x2-4)(x1-x2)
x1x2

∵x1<x2<-2,∴x1x2-4>0,x1-x2<0,x1x2>0,
∴f(x1)-f(x2)<0,即f(x1)<f(x2
∴函数f(x)在(-∞,-2)上是增函数.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知x0函数f(x)=(
1
3
)x-log2x
的零点,若0<x1<x0,则f(x1)的值为(  )
A、恒为负值B、等于0
C、恒为正值D、不大于0

查看答案和解析>>

科目:高中数学 来源: 题型:

已知:函数f(x)=
x2+4x

(1)求:函数f(x)的定义域;
(2)判断函数f(x)的奇偶性并说明理由;
(3)判断函数f(x)在(-∞,-2)上的单调性,并用定义加以证明.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知幂函数f(x)=x-m2+2m+3(m∈Z)为偶函数,且在区间(0,+∞)上是单调增函数,则m=
1
1

查看答案和解析>>

科目:高中数学 来源: 题型:

.已知幂函数f(x)=xk2-2k-3(k∈N*)的图象关于y轴对称,且在区间(0,+∞)上是减函数,
(1)求函数f(x)的解析式;
(2)若a>k,比较(lna)0.7与(lna)0.6的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知奇函数f(x)=
-x2+2x   (x>0)
0
                (x=0)
x2+mx
     (x<0)
,则m=(  )

查看答案和解析>>

同步练习册答案