精英家教网 > 高中数学 > 题目详情
若椭圆的焦点分别为F1、F2,以原点为圆心且过焦点的圆O与椭圆相交于点P,则△F1PF2的面积等于( )
A.8
B.16
C.32
D.64
【答案】分析:由题意推出三角形是直角三角形,设出|PF1|=m,|PF2|=n,利用椭圆的定义求得n+m的值,平方后求得mn和m2+n2的关系,代入△F1PF2的勾股定理中求得mn的值,即可求出△F1PF2的面积.
解答:解:椭圆的焦点分别为F1、F2,以原点为圆心且过焦点的圆O与椭圆相交于点P,则△F1PF2是直角三角形,
因为,所以c2=8,a=4,
设|PF1|=m,|PF2|=n,
由椭圆的定义可知m+n=2a,
∴m2+n2+2nm=4a2
∴m2+n2=4a2-2nm
由勾股定理可知m2+n2=4c2,解得mn=16,
则△F1PF2的面积为8.
故选A.
点评:本题主要考查了椭圆的应用,椭圆的简单性质和椭圆的定义.考查了考生对所学知识的综合运用.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

若椭圆
x2
a2
+
y2
b2
= 1
(a>b>0)的左右焦点分别为F1,F2,线段F1F2被抛物线y2=2bx的焦点F内分成了3:1的两段.
(1)求椭圆的离心率;
(2)过点C(-1,0)的直线l交椭圆于不同两点A、B,且
AC
=2
CB
,当△AOB的面积最大时,求直线l和椭圆的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

精英家教网已知A,B是椭圆C:
x2
a2
+
y2
b2
=1(a>b>0)的左,右顶点,B(2,0),过椭圆C的右焦点F的直线交于其于点M,N,交直线x=4于点P,且直线PA,PF,PB的斜率成等差数列.
(Ⅰ)求椭圆C的方程;
(Ⅱ)若记△AMB,△ANB的面积分别为S1,S2
S1
S2
的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2010•温州二模)已知椭圆
y2
a2
+
x2
b2
=1(a>b>0)
的上焦点为F,左、右顶点分别为B1,B2,下顶点为A,直线AB2与直线B1F交于点P,若
AP
=2
AB2
,则椭圆的离心率为(  )

查看答案和解析>>

科目:高中数学 来源:2013-2014学年湖北武汉市高三2月调研测试理科数学试卷(解析版) 题型:解答题

如图,矩形ABCD中,|AB|2|BC|2EFGH分别矩形四条边的中点,分别以HFEG所在直线为x轴,y轴建立平面直角坐标系,已知λλ,其中0λ1

1)求证:直线ERGR′的交点M在椭圆Γy21上;

2N直线lyx2上且不在坐标轴上的任意一点,F1F2分别为椭圆Γ的左、右焦点直线NF1NF2与椭圆Γ的交点分别为PQST是否存在点N,使直线OPOQOSOT的斜率kOPkOQkOSkOT满足kOPkOQkOSkOT0?若存在,求出点N的坐标;若不存在,说明理由

 

查看答案和解析>>

科目:高中数学 来源: 题型:

设椭圆=1(a>b>0)的焦点分别为F1(-1,0)、F2(1,0),右准线l交x轴于点A,且.

(1)试求椭圆的方程;

(2)过F1、F2分别作互相垂直的两直线与椭圆分别交于D、E、M、N四点(如图所示),试求四边形DMEN面积的最大值和最小值.

(文)已知函数f(x)=x3+bx2+cx,b、c∈R,且函数f(x)在区间(-1,1)上单调递增,在区间(1,3)上单调递减.

(1)若b=-2,求c的值;

(2)求证:c≥3;

(3)设函数g(x)=f′(x),当x∈[-1,3]时,g(x)的最小值是-1,求b、c的值.

查看答案和解析>>

同步练习册答案