精英家教网 > 高中数学 > 题目详情
7.命题“?x∈R,x2≤0”的否定为?x∈R,x2>0.

分析 直接利用特称命题的否定是全称命题写出结果即可.

解答 解:因为特称命题的否定是全称命题,所以,命题“?x∈R,x2≤0”的否定为:?x∈R,x2>0.
故答案为:?x∈R,x2>0.

点评 本题考查命题的否定,特称命题与全称命题的否定关系,是基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

17.如图,有一块半径为2的半圆形纸片,计划剪裁成等腰梯形ABCD的形状,它的下底AB是⊙O的直径,上底CD的端点在圆周上,设CD=2x,梯形ABCD的周长为y.
(1)求出y关于x的函数f(x)的解析式;
(2)求y的最大值,并指出相应的x值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.已知正三棱柱ABC-A1B1C1的底面边长为a,侧棱长为$\sqrt{2}$a,M为A1B1的中点,求BC1与平面AMC1所成角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.在极坐标系中,已知三点A(4,0)、$B(4,\frac{3π}{2})$、$C(ρ,\frac{π}{6})$.
(1)若A、B、C三点共线,求ρ的值;
(2)求过OAB三点的圆的极坐标方程.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.某家公司每月生产两种布料A和B,所有原料是两种不同颜色的羊毛,如表给出了生产每匹每种布料所需的羊毛量,以及可供使用的每种颜色的羊毛的总量.
羊毛颜色每匹需要 ( kg)供应量(kg)
布料A布料B
441400
绿631800
已知生产每匹布料A、B的利润分别为120元、80元.那么如何安排生产才能够产生最大的利润?最大的利润是多少?

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.底面边长为2,高为3的正三棱锥的体积为$\sqrt{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.在平面直角坐标系xOy中,已知圆(x-m-1)2+(y-2m)2=4上有且只有两个点到原点O的距离为3,则实数m的取值范围为(-$\frac{12}{5}$,-$\frac{2}{5}$)∪(0,2).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.抛物线x2=2y的焦点到其准线的距离是(  )
A.1B.2C.3D.4

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.sin$\frac{5π}{4}$=$-\frac{\sqrt{2}}{2}$.

查看答案和解析>>

同步练习册答案