精英家教网 > 高中数学 > 题目详情
如果函数y=f(x)的导函数的图象如图所示,给出下列判断:精英家教网
①函数y=f(x)在区间(-3,-
1
2
)内单调递增;
②函数y=f(x)在区间(-
1
2
,3)内单调递减;
③函数y=f(x)在区间(4,5)内单调递增;
④当x=2时,函数y=f(x)有极小值;
⑤当x=-
1
2
时,函数y=f(x)有极大值.
则上述判断中正确的是
 
分析:利用使f′(x)>0的区间是增区间,使f′(x)<0的区间是减区间,分别对①②③进行逐一判定,导数等于零的值是极值,先增后减是极大值,先减后增是极小值,再对④⑤进行判定.
解答:解:①函数y=f(x)在区间(-3,-
1
2
)内有增有减,故不正确
②函数y=f(x)在区间(-
1
2
,3)有增有减,故不正确
③函数y=f(x)当x∈(4,5)时,恒有f′(x)>0.正确
④当x=2时,函数y=f(x)有极大值,故不正确
⑤当x=-
1
2
时,f′(x)≠0,故不正确,
故答案为③
点评:本题考查了通过导函数图象判定原函数的单调性,以及极值问题,属于易错题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

3、如果函数y=f(x)的图象如图,那么导函数y=f′(x)的图象可能是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

证明:如果函数y=f(x)在点x0处可导,那么函数y=f(x)在点x0处连续.

查看答案和解析>>

科目:高中数学 来源: 题型:

4、已知命题p:函数y=loga(ax+2a)(a>0且a≠1)的图象必过定点(-1,1);命题q:如果函数y=f(x-3)的图象关于原点对称,那么函数y=f(x)的图象关于点(3,0)对称.则(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

下列判断正确的是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

已知f(x)=
1
4
x4+
1
3
x3+
1
2
ax2+b
x+c.
(1)如果b=0,且f(x)在x=1时取得极值,求a的值,并指出这个极值是极大值还是极小值,说明理由;
(2)当a=-1时,如果函数y=f(x)的图象上有三个不同点处的切线与直线x+2y+3=0垂直,求b的取值范围.

查看答案和解析>>

同步练习册答案