精英家教网 > 高中数学 > 题目详情

【题目】已知函数f(x)=ax2+bx+c(a,b,c∈R,a≠0),对任意的x∈R,都有f(x﹣4)=f(2﹣x)成立,
(1)求2a﹣b的值;
(2)函数f(x)取得最小值0,且对任意x∈R,不等式x≤f(x)≤( 2恒成立,求函数f(x)的解析式;
(3)若方程f(x)=x没有实数根,判断方程f(f(x))=x根的情况,并说明理由.

【答案】
(1)解:由f(x﹣4)=f(2﹣x)成立,可得函数y=f(x)图象的对称轴方程为x= =﹣1,

∴﹣ =﹣1,∴2a﹣b=0


(2)解:当x=﹣1 时,f(x)=a﹣b+c=0,

对于不等式x≤f(x)≤( 2 ,当x=1时,有1≤f(1)≤1,∴f(1)=a+b+c=1.

由以上方程解得 a= =c,b= ,∴函数的解析式为


(3)解:因为方程f(x)=x无实根,所以当a>0时,不等式f(x)>x恒成立,

∴f(f(x))>f(x)>x,故方程f(f(x))=x无实数解.

当a<0时,不等式f(x)<x恒成立,∴f(f(x))<f(x)<x,

故方程f(f(x))=x无实数解,

综上得:方程f(f(x))=x无实数解


【解析】(1)由f(x﹣4)=f(2﹣x)成立,可得函数y=f(x)图象的对称轴方程为 x=﹣ =﹣1,由此求得 2a﹣b的值. (2)当x=﹣1 时,f(x)=a﹣b+c=0,对于不等式x≤f(x)≤( 2 , 当x=1时,由1≤f(1)≤1,可得f(1)=a+b+c=1.求得a、b、c的值,可得函数的解析式.(3)由题意可得,当a>0时,不等式f(x)>x恒成立,f(f(x))>f(x)>x,方程f(f(x))=x无实数解.当a<0时,由不等式f(x)<x恒成立,可得f(f(x))<f(x)<x,方程f(f(x))=x无实数解,综合可得结论.
【考点精析】关于本题考查的二次函数的性质,需要了解当时,抛物线开口向上,函数在上递减,在上递增;当时,抛物线开口向下,函数在上递增,在上递减才能得出正确答案.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】函数f(x)=﹣x2+(3﹣2m)x+2+m(0<m≤1).
(1)若x∈[0,m],证明:f(x)≤
(2)求|f(x)|在[﹣1,1]上的最大值g(m).

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设函数f(x)(x∈R)为奇函数,f(1)= ,f(x+2)=f(x)+f(2),则f(5)=(
A.0
B.1
C.
D.5

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】选修4-4:坐标系与参数方程

在极坐标系中,圆的极坐标方程为.若以极点为原点,极轴所在直线为轴建立平面直角坐标系.

)求圆的参数方程;

)在直角坐标系中,点是圆上动点,试求的最大值,并求出此时点的直角坐标.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设函数 ).

(Ⅰ)求函数的单调增区间;

(Ⅱ)当时,记,是否存在整数,使得关于的不等式有解?若存在,请求出的最小值;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】下面茎叶图表示的是甲、乙两人在5次综合测评中的成绩(成绩为整数,满分为100),其中一个数字被污损,则乙的平均成绩不低于甲的平均成绩的概率为(

A.
B.
C.
D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】从一批土鸡蛋中,随机抽取n个得到一个样本,其重量(单位:克)的频数分布表如表:

分组(重量)

[80,85)

[85,90)

[90,95)

[95,100]

频数(个)

10

50

m

15

已知从n个土鸡蛋中随机抽取一个,抽到重量在在[90,95)的土鸡蛋的根底为
(1)求出n,m的值及该样本的众数;
(2)用分层抽样的方法从重量在[80,85)和[95,100)的土鸡蛋中共抽取5个,再从这5个土鸡蛋中任取2 个,其重量分别是g1 , g2 , 求|g1﹣g2|≥10概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,平行六面体ABCD﹣A1B1C1D1中,侧棱B1B长为3,底面是边长为2的菱形,∠A1AB=120°,∠A1AD=60°,点E在棱B1B上,则AE+C1E的最小值为(  )

A.
B.5
C.2
D.7

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,已知四棱锥的侧棱底面,且底面是直角梯形,,点在侧棱上.

(1)求证:平面

(2)若侧棱与底面所成角的正切值为,点为侧棱的中点,求异面直线所成角的余弦值.

查看答案和解析>>

同步练习册答案