精英家教网 > 高中数学 > 题目详情

定义在R上的偶函数时单调递增,

则  (    )

A.                 B. C.    D. 

 

【答案】

B

【解析】解:由题意可得f(x+2)=f(x)且f(x)=f(-x)

∴f(-5)=f(5)=f(3)=f(1),,又因为,且f(x)在(0,1]上单调递增,故有,选D

 

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(2009•黄冈模拟)定义在R上的偶函数y=f(x)满足:
①对x∈R都有f(x+6)=f(x)+f(3)
②f(-5)=-1;
③当x1,x2∈[0,3]且x1≠x2时,都有
f(x1)-f(x2)x1-x2
>0则
(1)f(2009)=
-1
-1

(2)若方程f(x)=0在区间[a,6-a]上恰有3个不同实根,实数a的取值范围是
(-9,-3]
(-9,-3]

查看答案和解析>>

科目:高中数学 来源: 题型:

设函数f(x)是定义在R上的偶函数,且对任意的x∈R恒有f(x+1)=f(x-1),已知当x∈[0,1]时,f(x)=(
1
2
)1-x
,则其中所有正确命题的序号是
①②④
①②④

①2是函数f(x)的周期; ②函数f(x)在(1,2)上是减函数,在(2,3)上是增函数;
③函数f(x)的最大值是1,最小值是0; ④当x∈[3,4]时,f(x)=(
1
2
)x-3

查看答案和解析>>

科目:高中数学 来源: 题型:

已知定义在R上的偶函数f(x)的最小值为1,当x∈[0,+∞)时,f(x)=aex
(Ⅰ)求函数f(x)的解析式;
(Ⅱ)求最大的整数m(m>1),使得存在t∈R,只要x∈[1,m],就有f(x+t)≤ex.(注:e为自然对数的底数)

查看答案和解析>>

科目:高中数学 来源: 题型:

已知f(x)是定义在R上的偶函数,对任意x∈R,都有f(2+x)=-f(x),且当x∈[0,1]时在f(x)=-x2+1,若a[f(x)]2-bf(x)+3=0在[-1,5]上有5个根xi(i=1,2,3,4,5),则x1+x2+x3+x4+x5的值为(  )

查看答案和解析>>

同步练习册答案