精英家教网 > 高中数学 > 题目详情

如图,在直三棱柱ABC-A1B1C1中,数学公式,AB=AC=2,AA1=6,点E、F分别在棱AA1、CC1上,且AE=C1F=2.
(1)求四棱锥B-AEFC的体积;
(2)求△BEF所在半平面与△ABC所在半平面所成二面角θ的余弦值.

解:(1)因为三棱柱ABC-A1B1C1为直三棱柱,所以A1A⊥底面ABC,所以A1A⊥AB,
又AB⊥AC,AC∩A1A=A,所以AB⊥面AA1C1C,则AB为四棱锥B-AEFC的高.
在直角梯形AEFC中,因为AE=2,AC=2,CF=4,所以
所以VB-AEFC=
(2)以A为坐标原点,分别以AC,AB,AA1所在直线为x,y,z建立如图所示的直角坐标系,

则A(0,0,0),B(0,2,0),E(0,0,2),F(2,0,4),

设平面BEF的法向量为,则
,则,取z=1,得x=-1,y=1.
所以
平面ABC的一个法向量为

所以△BEF所在半平面与△ABC所在半平面所成二面角θ的余弦值为
分析:(1)由已知条件可判出AB⊥面AA1C1C,求出直角梯形AEFC的面积,则四棱锥B-AEFC的体积可求;
(2)以A为坐标原点建立空间直角坐标系,求出平面ABC与平面BEF的法向量,利用平面法向量所成角的余弦值得△BEF所在半平面与△ABC所在半平面所成二面角θ的余弦值.
点评:本题考查了椎体体积的求解方法,考查了利用空间向量求二面角的平面角,解答的关键是建立正确的空间坐标系,是中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

如图,在直三棱柱AB-A1B1C1中.∠ BAC=90°,AB=AC=AA1 =1.D是棱CC1上的一P是AD的延长线与A1C1的延长线的交点,且PB1∥平面BDA.

(I)求证:CD=C1D:

(II)求二面角A-A1D-B的平面角的余弦值; 

(Ⅲ)求点C到平面B1DP的距离.

查看答案和解析>>

科目:高中数学 来源:2011年四川省招生统一考试理科数学 题型:解答题

 

 (本小题共l2分)

    如图,在直三棱柱AB-A1B1C1中.∠ BAC=90°,AB=AC=AA1 =1.D是棱CC1上的一[来源:]

P是AD的延长线与A1C1的延长线的交点,且PB1∥平面BDA.

(I)求证:CD=C1D:

(II)求二面角A-A1D-B的平面角的余弦值;   

(Ⅲ)求点C到平面B1DP的距离.

 

查看答案和解析>>

科目:高中数学 来源:2011年高考试题数学理(四川卷)解析版 题型:解答题

 (本小题共l2分)

    如图,在直三棱柱AB-A1B1C1中.∠ BAC=90°,AB=AC=AA1 =1.D是棱CC1上的一

P是AD的延长线与A1C1的延长线的交点,且PB1∥平面BDA.

(I)求证:CD=C1D:

(II)求二面角A-A1D-B的平面角的余弦值;   

(Ⅲ)求点C到平面B1DP的距离.

 

 

 

查看答案和解析>>

科目:高中数学 来源:四川省高考真题 题型:解答题

如图,在直三棱柱AB-A1B1C1中,∠ BAC=90°,AB=AC=AA1=1,D是棱CC1上一点,P是AD的延长线与A1C1的延长线的交点,且PB1∥平面BDA。
(I)求证:CD=C1D;
(II)求二面角A-A1D-B的平面角的余弦值;
(Ⅲ)求点C到平面B1DP的距离

查看答案和解析>>

科目:高中数学 来源: 题型:

    如图,在直三棱柱AB-A1B1C1中.∠ BAC=90°,AB=AC=AA1 =1.D是棱CC1上的一点,P是AD的延长线与A1C1的延长线的交点,且PB1∥平面BDA.

(I)求证:CD=C1D:

(II)求二面角A-A1D-B的平面角的余弦值;

(Ⅲ)求点C到平面B1DP的距离.

查看答案和解析>>

同步练习册答案