【题目】在平面直角坐标系
中,①已知点
,
,
为曲线
上任一点,
到点
的距离和到点
的距离的比值为2;②圆
经过
,
,且圆心在直线
上.从①②中任选一个条件.
(1)求曲线
的方程;
(2)若直线
被曲线
截得弦长为2,求
的值.
科目:高中数学 来源: 题型:
【题目】已知抛物线
:![]()
,焦点
,如果存在过点![]()
的直线
与抛物线
交于不同的两点
.
,使得
,则称点
为抛物线
的“
分点”.
![]()
(1)如果
,直线
:
,求
的值;
(2)如果
为抛物线
的“
分点”,求直线
的方程;
(3)证明点
不是抛物线
的“2分点”;
(4)如果![]()
是抛物线的“2分点”,求
的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】若方程
所表示的曲线为
,则下面四个选项中错误的是( )
A.若
为椭圆,则
B.若
是双曲线,则其离心率有![]()
C.若
为双曲线,则
或
D.若
为椭圆,且长轴在
轴上,则![]()
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在平行四边形
中,过点C的直线与线段
、
分别相交于点M、N,若
,
;
(1)求y关于x的函数解析式;
(2)定义函数
(
),点列
(
,
)在函数
的图像上,且数列
是以1为首项,0.5为公比的等比数列,O为原点,令
,是否存在点
,使得
?若存在,求出Q点的坐标,若不存在,说明理由;
(3)设函数
为
上的偶函数,当
时,
,又函数
的图像关于直线
对称,当方程
在
(
)上有两个不同的实数解时,求实数a的取值范围;
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆C:
的两个焦点分别为
,点M(1,0)与椭圆短轴的两个端点的连线相互垂直.
(1)求椭圆C的方程;
(2)过点M(1,0)的直线与椭圆C相交于A、B两点,设点N(3,2),记直线AN、BN的斜率分别为k1、k2,求证:k1+k2为定值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆
,
为左焦点,
为上顶点,
为右顶点,若
,抛物线
的顶点在坐标原点,焦点为
.
(1)求
的标准方程;
(2)是否存在过
点的直线,与
和
交点分别是
和
,使得
?如果存在,求出直线的方程;如果不存在,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】若公差为
的无穷等差数列
的前
项和为
,则下列说法:(1)若
,则数列
有最大项;(2)若数列
有最大项,则
;(3)若数列
是递增数列,则对任意
都有
;(4)若对任意
都有
,则数列
是递增数列;其中正确的是______.(选序号).
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】焦点在x轴上的椭圆C:
经过点
,椭圆C的离心率为
.
,
是椭圆的左、右焦点,P为椭圆上任意点.
(1)求椭圆的标准方程;
(2)若点M为
的中点(O为坐标原点),过M且平行于OP的直线l交椭圆C于A,B两点,是否存在实数
,使得
;若存在,请求出
的值,若不存在,请说明理由.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com