精英家教网 > 高中数学 > 题目详情

设关于x,y的不等式组表示的平面区域内存在点P(x0y0)满足x0-2y0=2,求得m的取值范围是

A.     B.    C.    D.

C

要使可行域存在,必有m<-2m+1,要求可行域内包含直线上的点,只要边界点(-m,1-2m)在直线上方,且(-m,m)在直线下方,解不等式组得m<

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(2013•北京)设关于x,y的不等式组
2x-y+1>0 ,  
x+m<0 ,  
y-m>0
表示的平面区域内存在点P(x0,y0),满足x0-2y0=2,求得m的取值范围是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

设关于x,y的不等式组
cosθ≤x≤2cosθ
sinθ≤y≤2sinθ
(θ∈R)
表示的平面区域为Ω,点P(x,y)是Ω中的任意一点,点M(x,y)在圆C:(x+3)2+(y+3)2=1上,则|
PM
|
的最小值为(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

第Ⅰ小题:已知函数f(x)=x+1,设g1(x)=f(x),gn(x)=f(gn-1(x))(n>1,n∈N*
(1)求g2(x),g3(x)的表达式,并猜想gn(x)(n∈N*)的表达式(直接写出猜想结果 )  
(2)若关于x的函数y=x2+
n
i=1
gi(x)(n∈N*)
在区间(-∞,-
1
2
]
上的最小值为6,求n的值.
第Ⅱ小题:设关于x的不等式lg(|x+3|+|x-7|)>a
(1)当a=1时,解这个不等式;(2)当a为何值时,这个不等式的解集为R.

查看答案和解析>>

科目:高中数学 来源:2013年全国普通高等学校招生统一考试理科数学(北京卷解析版) 题型:选择题

设关于x,y的不等式组表示的平面区域内存在点P(x0,y0)满足x0-2y0=2,求得m的取值范围是

A.       B.         C.       D.

 

查看答案和解析>>

同步练习册答案