精英家教网 > 高中数学 > 题目详情
7.设F1、F2分别是椭圆$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)的左、右焦点,当a=2b时,点P在椭圆上,且PF1⊥PF2,|PF1|•|PF2|=2时,求椭圆方程.

分析 利用已知条件列出方程,求出椭圆的a,b,即可得到椭圆方程.

解答 解:∵a=2b,a2=b2+c2,∴c2=3b2
又∵PF1⊥PF2,∴|PF1|2+|PF2|2=(2c)2=12b2
由椭圆定义可知|PF1|+|PF2|=2a=4b,
(|PF1|+|PF2|)2=12b2+4=16b2
从而得b2=1,a2=4,
∴椭圆方程为:$\frac{{x}^{2}}{4}+{y}^{2}=1$.

点评 本题考查椭圆方程的求法,椭圆的简单性质的应用,考查计算能力.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

3.已知函数f(x)是定义在(-8,8)上的偶函数,f(x)在[0,8)上是单调函数,且f(-3)<f(2)则下列不等式成立的是(  )
A.f(-1)<f(1)<f(3)B.f(2)<f(3)<f(-4)C.f(-2)<f(0)<f(1)D.f(5)<f(-3)<f(-1)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.若全集U=R,集合A={x|3≤x<7},B={x|2<x<10},则CUA∪B=R.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.根据下列条件,求直线的方程:
(1)过两直线3x-2y+1=0和x+3y+4=0的交点,且垂直于直线x+3y+4=0.
(2)当a为何值时,直线l1:y=-x+2a与直线l2:y=(a2-2)x+2平行.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.已知函数f(x)=x2-2|x|
(1)判断并证明函数f(x)的奇偶性;
(2)判断函数f(x)在(1,+∞)上的单调性,并解不等式$f(|a|+\frac{3}{2})>0$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.已知锐角α终边上一点A的坐标为(2sin3,-2cos3),则角α的弧度数为(  )
A.3B.π-3C.3-$\frac{π}{2}$D.$\frac{π}{2}$-3

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.已知函数f(x)=sin(ωx+φ)(ω>0,|φ|≤$\frac{π}{2}$),若(-$\frac{π}{4}$,0)为f(x)的图象的对称中心,x=$\frac{π}{4}$为f(x)的极值点,且f(x)在($\frac{5π}{18}$,$\frac{2π}{5}$)单调,则ω的最大值为5.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.如图,矩形O′A′B′C′是水平放置的一个平面图形的斜二测画法画出的直观图,其中O′A′=6cm,C′D′=2cm,则原图形是(  )
A.正方形B.矩形C.梯形D.菱形

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.已知椭圆C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)的焦点和短轴端点都在圆x2+y2=4上.
(1)求椭圆C的方程;
(2)已知点P(-3,2),若斜率为1的直线l与椭圆C相交于A,B两点,且△ABP是以AB为底边的等腰三角形,求直线l的方程.

查看答案和解析>>

同步练习册答案