精英家教网 > 高中数学 > 题目详情

已知函数单调递减,

   (I)求a的值;

   (II)是否存在实数b,使得函数的图象恰有3个交点,若的取值范围数b的值;若不存在,试说明理由。

(1)4(2)存在实数:


解析:

(I)由函数单调递减。

         …………2分

        …………3分

         …………4分

   (II)函数的图象恰好有3个交点,等价于方程

  …………6分

是其中一个根,      …………8分

故存在实数:        …………12分

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知函数f(x)=lnx,g(x)=
1
2
ax2+bx

(1)当a=b=
1
2
时,求函数h(x)=f(x)-g(x)的单调区间;
(2)若b=2且h(x)=f(x)-g(x)存在单调递减区间,求a的取值范围;
(3)当a≠0时,设函数f(x)的图象C1与函数g(x)的图象C2交于点P、Q,过线段PQ的中点R作x轴的垂线分别交C1、C2于点M,N,则是否存在点R,使C1在点M处的切线与C2在点N处的切线平行?如果存在,请求出R的横坐标,如果不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=x2(x-3),则f(x)在R上的单调递减区间是
(0,2)
(0,2)
,单调递增区间为
(-∞,0),(2,+∞)
(-∞,0),(2,+∞)

查看答案和解析>>

科目:高中数学 来源:甘肃省兰州一中08-09高三第三次月考(理) 题型:解答题

 

    已知函数单调递减,

   (I)求a的值;

   (II)是否存在实数b,使得函数的图象恰有3个交点,若存在,请求出实数b的值;若不存在,试说明理由。

 

 

 

 

 

 

 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知是单调递减函数,则的最大值是        

A.1                  B.2                 C.3                D.4

查看答案和解析>>

同步练习册答案