精英家教网 > 高中数学 > 题目详情
13.函数$f(x)=\frac{3^x}{{{3^x}+\sqrt{3}}}$,则$f(\frac{1}{2016})+f(\frac{2}{2016})+…+f(\frac{2015}{2016})+f(\frac{2016}{2016})$=1009-$\frac{\sqrt{3}}{2}$.

分析 推导出f(x)+f(1-x)=1,从而$f(\frac{1}{2016})+f(\frac{2}{2016})+…+f(\frac{2015}{2016})+f(\frac{2016}{2016})$=1007+f($\frac{1}{2}$)+f(1),由此能求出结果.

解答 解:∵函数$f(x)=\frac{3^x}{{{3^x}+\sqrt{3}}}$,
∴f(x)+f(1-x)=$\frac{{3}^{x}}{{3}^{x}+\sqrt{3}}+\frac{{3}^{1-x}}{{3}^{1-x}+\sqrt{3}}$=$\frac{{3}^{x}}{{3}^{x}+1}+\frac{3}{3+\sqrt{3}•{3}^{x}}$=$\frac{{3}^{x}}{{3}^{x}+\sqrt{3}}+\frac{\sqrt{3}}{\sqrt{3}+{3}^{x}}$=1,
∴$f(\frac{1}{2016})+f(\frac{2}{2016})+…+f(\frac{2015}{2016})+f(\frac{2016}{2016})$=1007+f($\frac{1}{2}$)+f(1)
=1007+$\frac{{3}^{\frac{1}{2}}}{{3}^{\frac{1}{2}}+\sqrt{3}}$+$\frac{3}{3+\sqrt{3}}$=1007+$\frac{1}{2}+\frac{3}{2}-\frac{\sqrt{3}}{2}$=1009-$\frac{\sqrt{3}}{2}$.
故答案为:$1009-\frac{{\sqrt{3}}}{2}$.

点评 本题考查函数值的求法,是基础题,解题时要认真审题,注意函数性质的合理运用.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

3.已知$|{\overrightarrow a}|=1$,$|{\overrightarrow b}|=\sqrt{2}$,$|{\overrightarrow c}|=\sqrt{3}$,且$\overrightarrow a+\overrightarrow b+\overrightarrow c=\overrightarrow 0$,则$\overrightarrow a•\overrightarrow b+\overrightarrow b•\overrightarrow c+\overrightarrow c•\overrightarrow a$=-3.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.已知函数f(x)=x2+2sinθ•x-1,x∈[-$\frac{1}{2}$,$\frac{\sqrt{3}}{2}$].
(1)当sinθ=-$\frac{1}{2}$时,求f(x)的最大值和最小值;
(2)若f(x)在x∈[-$\frac{1}{2}$,$\frac{\sqrt{3}}{2}$]上是单调函数,且θ∈[0,2π),求θ的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.下列四个函数中在(0,+∞)上为增函数的是(  )
A.f(x)=3-xB.f(x)=(x-1)2C.f(x)=$\frac{1}{x}$D.f(x)=x2+2x

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.下列幂函数中过点(0,0),(1,1)的偶函数是(  )
A.$y={x^{\frac{1}{2}}}$B.y=x2C.y=x-1D.y=x3

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.如图,PA垂直于矩形ABCD所在的平面,则图中与平面PCD垂直的平面是(  )
A.平面ABCDB.平面PBCC.平面PADD.平面PBC

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.已知函数f(x)是定义在[-1,1]上的奇函数,且f(1)=1,若对任意的x,y∈[-1,1],且x+y≠0,都有(x+y)•[f(x)+f(y)]>0.
(1)判断f(x)的单调性,并加以证明;
(2)解不等式$f({x+\frac{1}{2}})+f({2x-1})<0$;
(3)若f(x)≤m2-2am+2对任意的x∈[-1,1],m∈[1,2]恒成立,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.已知函数f(x)=x2+bx-alnx.
(1)当a>0时,函数f(x)是否存在极值?判断并证明你的结论;
(2)若x=2是函数f(x)的极值点,1和x0是函数f(x)的两个不同零点,且x0∈(n,n+1),求自然数n的值;
(3)若对任意b∈[-2,-1],都存在x∈(1,e),使得f(x)<0成立,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.已知向量$\overrightarrow m=(sinx,-1)$,向量$\overrightarrow n=(\sqrt{3}cosx,-\frac{1}{2})$,函数$f(x)=(\overrightarrow m+\overrightarrow n)•\overrightarrow m$.
(Ⅰ)求f(x)单调递减区间;
(Ⅱ)已知a,b,c分别为△ABC内角A,B,C的对边,A为锐角,$a=2\sqrt{3}$,c=4,且f(A)恰是f(x)在$[{0,\frac{π}{2}}]$上的最大值,求A,b,和△ABC的面积S.

查看答案和解析>>

同步练习册答案