精英家教网 > 高中数学 > 题目详情
已知不等式x2-2x-3<0的解集为A,不等式|x+1|<3的解集为B,不等式x2+ax+b<0的解集为A∩B,那么a+b=
 
考点:交集及其运算
专题:集合
分析:由已知条件推导出A={x|-1<x<3},B={x|-4<x<2},从而不等式x2+ax+b<0的解集为A∩B={x|-1<x<2},进而-1,2是方程x2+ax+b=0的解,由此能求出a+b=-3.
解答: 解:∵不等式x2-2x-3<0的解集为A,不等式|x+1|<3的解集为B,不等式x2+ax+b<0的解集为A∩B,
∴A={x|-1<x<3},B={x|-4<x<2},
∴不等式x2+ax+b<0的解集为A∩B={x|-1<x<2},
∴-1,2是方程x2+ax+b=0的解,
-1+2=-a
-1×2=b
,解得a=-1,b=-2,
∴a+b=-3.
故答案为:-3.
点评:本题考查两个实数值的求法,是基础题,解题时要认真审题,注意不等式性质的合理运用.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

若全集U={-1,-2,-3,-4},M={-2,-3},则∁UM(  )
A、{-1,-2,-3}
B、{-2}
C、{-4}
D、{-1,-4}

查看答案和解析>>

科目:高中数学 来源: 题型:

在一次人才招聘会上,有A,B,C三种不同的技工面向社会招聘,已知某技术人员应聘A,B,C三种技工被录用的概率分别是0.8、0.5、0.2(允许技工人员同时被多种技工录用).
(1)求该技术人员被录用的概率;
(2)设ξ表示该技术人员被录用的工种数与未被录用的工种数的乘积,求ξ的分布列和数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:

设函数f(x)=ax2+bx+c(a,b,c∈R),f(1)=-
a
2

(1)若f(x)<1的解集为(0,3),求f(x)的表达式;
(2)若a>0,求证:函数f(x)在区间(0,2)内至少有一个零点.

查看答案和解析>>

科目:高中数学 来源: 题型:

△ABC中,角A、B、C所对的边分别为a、b、c,△ABC的面积为S,且
a
b+c
+
b
a+c
=1,
(1)求角C的大小;
(2)若c2
3
ab-
3
2
b2,且c=
6
,求S的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

在100件产品中有3件次品,从中任取2件进行检验,至少有1件次品的不同取法有
 
种.

查看答案和解析>>

科目:高中数学 来源: 题型:

函数y=
5-2sinx
2+sinx
的最大值是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=ex-e-x,其中e是自然对数的底数.
(1)证明:f(x)是R上的奇函数;
(2)若函数g(x)=e2x+e-2x-6f(x),求g(x)在区间[0,1]上的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知M(x1,y1)是双曲线
x2
a2
-
y2
b2
=1右支上任意一点,则点M到双曲线两焦点F1、F2的距离分别为
 
(用x1,y1,a,b表示).

查看答案和解析>>

同步练习册答案