精英家教网 > 高中数学 > 题目详情

(1)求焦点为(0,-6),(0,6)且经过点(2,-5)的双曲线方程;
(2)正三角形的一个顶点位于抛物线y2=2px(p>0)的焦点,另外两个顶点在抛物线上,求正三角形的边长.

解:(1)由题意,双曲线的焦点在y轴上且c=6
设方程为(a>0,b>0),则a2+b2=c2=36
∵双曲线经过点(2,-5)

∴a2=20,b2=16
∴双曲线方程为
(2)∵抛物线y2=2px关于x轴对称,
∴若正三角形的一个顶点位于焦点,另外两个顶点在抛物线y2=2px(p>0)上,
∴A,B点关于x轴对称,
∴直线FA倾斜角为30°,斜率为
∴直线FA方程为y=(x-
与抛物线方程联立,可得y2-2py-p2=0
∴y=(+2)p或y=(-2)p
∴|AB|=2(+2)p或|AB|=2(-2)p.
分析:(1)设出双曲线方程,根据c=6,双曲线经过点(2,-5),建立方程,即可求得双曲线方程;
(2)确定正三角形的边所在直线的方程与抛物线方程联立,即可求正三角形的边长.
点评:本题考查双曲线方程,考查直线与抛物线的位置关系,考查学生的计算能力,属于中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知椭圆
y2
a2
+
x2
b2
=1
的一个焦点为F(0,2
2
)
,与两坐标轴正半轴分别交于A,B两点(如图),向量
AB
与向量
m
=(-1,
2
)
共线.
(1)求椭圆的方程;
(2)若斜率为k的直线过点C(0,2),且与椭圆交于P,Q两点,求△POC与△QOC面积之比的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

(1)求焦点为(0,-6),(0,6)且经过点(2,-5)的双曲线方程;
(2)正三角形的一个顶点位于抛物线y2=2px(p>0)的焦点,另外两个顶点在抛物线上,求正三角形的边长.

查看答案和解析>>

科目:高中数学 来源:2012-2013学年四川省乐山一中高二(上)期中数学试卷(解析版) 题型:解答题

(1)求焦点为(0,-6),(0,6)且经过点(2,-5)的双曲线方程;
(2)正三角形的一个顶点位于抛物线y2=2px(p>0)的焦点,另外两个顶点在抛物线上,求正三角形的边长.

查看答案和解析>>

科目:高中数学 来源:2012-2013学年四川省乐山一中高二(上)期中数学试卷(解析版) 题型:解答题

(1)求焦点为(0,-6),(0,6)且经过点(2,-5)的双曲线方程;
(2)正三角形的一个顶点位于抛物线y2=2px(p>0)的焦点,另外两个顶点在抛物线上,求正三角形的边长.

查看答案和解析>>

同步练习册答案