分析 利用函数y=Asin(ωx+φ)的图象变换规律,正弦函数、余弦函数的图象的对称性,可得 φ=$\frac{5π}{12}$-$\frac{kπ}{2}$,k∈Z,从而求得φ的最小值.
解答 解:把函数y=sin(2x+$\frac{4π}{3}$)的图象向右平移φ(φ>0)个单位,所得图象对应的解析式为 y=sin[2(x-φ)+$\frac{4π}{3}$]=sin(2x+$\frac{4π}{3}$-2φ),
再根据所得图象关于y轴对称,可得$\frac{4π}{3}$-2φ=kπ+$\frac{π}{2}$,k∈Z,即 φ=$\frac{5π}{12}$-$\frac{kπ}{2}$,k∈Z,
则φ的最小值为$\frac{5π}{12}$,
故答案为:$\frac{5π}{12}$.
点评 本题主要考查函数y=Asin(ωx+φ)的图象变换规律,正弦函数、余弦函数的图象的对称性,属于基础题.
科目:高中数学 来源: 题型:选择题
| A. | 若m∥α,n∥α,则m∥n | B. | 若m∥α,m∥β,则α∥β | ||
| C. | 若m∥n,m∥α,n?α,则n∥α | D. | 若m∥α,α∥β,则m∥β |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{\sqrt{6}}{2}$ | B. | $\sqrt{6}$ | C. | $\frac{\sqrt{3}}{2}$ | D. | $\sqrt{3}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | (0,$\frac{\sqrt{7}}{7}$) | B. | ($\frac{\sqrt{7}}{7}$,1) | C. | ($\frac{\sqrt{5}}{5}$,1) | D. | (0,$\frac{\sqrt{5}}{5}$) |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com