精英家教网 > 高中数学 > 题目详情
设函数f(x)是定义在R上的偶函数,并在区间(-∞,0)内单调递增,f(2a2+a+1)<f(3a2-2a+1).求a的取值范围,并在该范围内求函数y=()的单调递减区间.
函数y=()的单调递减区间为[,3)
欲由f(2a2+a+1)<f(3a2-2a+1)求a的取值范围,就要设法利用函数f(x)的单调性。
而函数y=()是一个复合函数,应该利用复合函数单调性的判定方法解决
设0<x1<x2,则-x2<-x1<0,∵f(x)在区间(-∞,0)内单调递增,
f(-x2)<f(-x1),∵f(x)为偶函数,∴f(-x2)=f(x2),f(-x1)=f(x1),
f(x2)<f(x1).∴f(x)在(0,+∞)内单调递减.

f(2a2+a+1)<f(3a2-2a+1)得:2a2+a+1>3a2-2a+1.解之,得0<a<3.
a2-3a+1=(a)2.
∴函数y=()的单调减区间是
结合0<a<3,得函数y=()的单调递减区间为[,3).
偶函数在关于原点对称的两个区间上的单调性相反,而奇函数在关于原点对称的两个区间上的单调性相同。
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

在自然条件下,某草原上野兔第n年年初的数量记为xn,该年的增长量yn和 xn的乘积成正比,比例系数为,其中m是与n无关的常数,且x1<m,
(1)证明:;
(2)用 xn表示xn+1;并证明草原上的野兔总数量恒小于m.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

已知函数在区间上为增函数,则实数a的取值范围是     

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知函数的定义域为对定义域内的任意,都有
(1)求证:是偶函数;
(2)求证:上是增函数;
(3)解不等式
 

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

已知函数分别由下表给出

1
2
3

1
3
1

1
2
3

3
2
1
 
的值为            ;满足的值是          

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知集合M是满足下列性质函数的f(x)的全体,在定义域D内存在x0,使得f(x0+1)=f(x0)+f(1)成立.
(1)函数f(x)=
1
x
,g(x)=x2是否属于集合M?分别说明理由.
(2)若函数f(x)=lg
a
x2+1
属于集合M,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

如果函数f(x)满足:对任意的实数x,y都有f(x+y)=f(x)•f(y)且f(1)=2,则
f(2)
f(1)
+
f(4)
f(2)
+
f(6)
f(3)
+
f(8)
f(4)
+…+
f(20)
f(10)
=______.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

已知定义在R上的函数f(x)满足f(0)=1,且对任意x,y∈R,都有f(x-y)="f(x)" –y(2x-y+1)。则f(x)的解析式为                

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

函数对于任意实数满足条件,若,则=             

查看答案和解析>>

同步练习册答案