精英家教网 > 高中数学 > 题目详情
如果函数f(x)满足:对任意的实数x,y都有f(x+y)=f(x)•f(y)且f(1)=2,则
f(2)
f(1)
+
f(4)
f(2)
+
f(6)
f(3)
+
f(8)
f(4)
+…+
f(20)
f(10)
=______.
由f(x+y)=f(x)•f(y)得f(2x)=f(x)2
f(2x)
f(x)
=f(x).
∵f(x+y)=f(x)•f(y)⇒f(x+1)=f(x)•f(2)=2f(x)⇒
f(x+1)
f(x)
=2,
所以数列{f(n)}是以2为首项,2为公比的等比数列,故f(n)=2×2n-1=2n
f(2n)
f(n)
=f(n)=2n
f(2)
f(1)
+
f(4)
f(2)
+
f(6)
f(3)
+
f(8)
f(4)
+…+
f(20)
f(10)
=21+22+23+…+210=
2(1-210)
1-2
=211-2=2046.
故答案为:2046.
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

设函数f(x)是定义在R上的偶函数,并在区间(-∞,0)内单调递增,f(2a2+a+1)<f(3a2-2a+1).求a的取值范围,并在该范围内求函数y=()的单调递减区间.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

设函数f(x)=
x2-6x+6,x≥0
3x+4,x<0
,若互不相等的实数x1,x2,x3满足f(x1)=f(x2)=f(x3),则x1+x2+x3的取值范围是(  )
A.(
11
3
,6
]
B.(
20
3
26
3
C.(
20
3
26
3
]
D.(
11
3
,6

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知奇函数f(x)对任意x,y∈R,总有f(x+y)=f(x)+f(y),且当x>0时,f(x)<0,f(1)=-
2
3

(1)求证:f(x)是R上的减函数.
(2)求f(x)在[-3,3]上的最大值和最小值.
(3)若f(x)+f(x-3)≤-2,求实数x的取值范围.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知函数f(x)=|x-1|-|x+2|.
(1)用分段函数的形式表示该函数;
(2)在右边所给的坐标第中画出该函数的图象;
(3)写出该函数的定义域、值域、奇偶性、单调区间(不要求证明).

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知函数f(x)=
2x-x2(0<x≤3)
x2+6x(-2<x≤0)
-
4x
x+1
(-∞<x≤-2)

(1)作出f(x)的图象;
(2)求f(x)的值域;
(3)求f(x)<0时的x取值集合;
(4)讨论方程f(x)=b解的个数.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

设函数f(x)=
2x,x∈(-∞,2)
log2x,x∈(2,+∞)
,则满足f(x)=4的x的值是(  )
A.2B.16C.2或16D.-2或16

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

抛物线轴的两个交点的横坐标分别为1和3,则不等式的解集是                    

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

函数的单调递减区间为                   

查看答案和解析>>

同步练习册答案