精英家教网 > 高中数学 > 题目详情
11.将函数f(x)=sin(2x+$\frac{π}{4}$)的图象向右平移$\frac{π}{8}$个单位,得到函数g(x)的图象,则函数g(x)的解析式为g(x)=sin2x.

分析 由条件利用函数y=Asin(ωx+φ)的图象变换规律,得出结论.

解答 解:将函数f(x)=sin(2x+$\frac{π}{4}$)的图象向右平移$\frac{π}{8}$个单位,得到函数g(x)=sin[2(x-$\frac{π}{8}$)+$\frac{π}{4}$]=sin2x的图象,
则函数g(x)的解析式为g(x)=sin2x,
故答案为:sin2x.

点评 本题主要考查函数y=Asin(ωx+φ)的图象变换规律,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

1.在复平面内,复数z=-1+i2015(i为虚数单位)对应点在第三象限.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.已知函数f(x)=Acos(ωx+φ)(A>0,ω>0)的图象与直线y=m(-A<m<0)的三个相邻交点的横坐标分别是3,5,9,则f(x)的单调递增区间是(  )
A.[6kπ+1,6kπ+4],k∈ZB.[6k-2,6k+1],k∈ZC.[6k+1,6k+4],k∈ZD.[6kπ-2,6kπ+1],k∈Z

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.如图,已知平行四边形ABCD的三个顶点的坐标分别为A(0,0),B(2,-1),C(4,2).
(1)求直线CD的方程;
(2)求平行四边形ABCD的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.已知角α的终边经过点P(-2,4),则sinα=$\frac{2\sqrt{5}}{5}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.已知向量$\overrightarrow{a}$=(3sinx,-1)$\overrightarrow{b}$=(3cosx,2),x∈R.
(1)若$\overrightarrow{a}$⊥$\overrightarrow{b}$,求sin2x的值;
(2)设向量$\overrightarrow{c}$=($\frac{1}{3}$,-$\frac{1}{3}$),记f(x)=$\frac{1}{9}$($\overrightarrow{a}$+$\overrightarrow{b}$)•($\overrightarrow{a}$-$\overrightarrow{b}$)+$\overrightarrow{a}$•$\overrightarrow{c}$,x∈[-$\frac{π}{2}$,$\frac{π}{2}$],求函数f(x)的值域.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.已知数列{an}是等差数列,公差d≠0,a1=1,a1,a3,a6成等比数列,则数列{an}的公差d等于$\frac{1}{4}$;前n项和Sn等于$\frac{{n}^{2}+7n}{8}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.已知平面向量$\overrightarrow{a}$=(1,-2),$\overrightarrow{b}$=(-2,2),则$\overrightarrow{a}$+2$\overrightarrow{b}$=(  )
A.(3,4)B.(-3,2)C.(-1,0)D.(5,-6)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.已知函数$f(x)=\frac{1}{{{2^x}-1}}+a$为奇函数,则实数a=$\frac{1}{2}$,函数f(x)在[1,3]上的值域为[$\frac{9}{14}$,$\frac{3}{2}$].

查看答案和解析>>

同步练习册答案