精英家教网 > 高中数学 > 题目详情
如图所示,已知圆O:x2+y2=1,直线l:y=kx+b(b>0)是圆的一条切线,且l与椭圆交于不同的两点A、B.
(1)若△AOB的面积等于,求直线l的方程;
(2)设△AOB的面积为S,且满足,求的取值范围.

【答案】分析:解:(1)由三角形的面积公式,要分别求底即弦长,要求高即点到直线的距离.(2)由(1)知△AOB的面积模型,即有可得而设A(x1,y1),B(x2,y2)由韦达定理,转化为关系k2的函数求解.
解答:解:(1)由题意可知:(1分)

得(1+2k2)x2+4kbx+2b2-2=0(2分)∴(3分)
而O到直线AB的距离为(4分)
则有
得k=±(15分)
所求直线的方程为.(6分)
(2)由题意可知
(8分)
设A(x1,y1),B(x2,y2
=(1+k2)x1x2+kb(x1+x2)+b(10分)
根据韦达定理得:
代入上式得:.(13分)
点评:本题主要考查直线与圆锥曲线的位置关系,弦长公式,点到直线的距离以及建立函数模型的能力.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

精英家教网如图所示,已知圆O:x2+y2=1,直线l:y=kx+b(b>0)是圆的一条切线,且l与椭圆
x2
2
+y2=1
交于不同的两点A、B.
(1)若△AOB的面积等于
2
3
,求直线l的方程;
(2)设△AOB的面积为S,且满足
6
4
≤S≤
2
6
7
,求
OA
OB
的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

精英家教网如图所示,已知圆O:x2+y2=1,直线l:y=kx+b(k>0,b>0)是圆的一条切线,且l与椭圆
x2
2
+y2=1
交于不同的两点A,B.
(1)若弦AB的长为
4
3
,求直线l的方程;
(2)当直线l满足条件(1)时,求
OA
OB
的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图所示,已知圆O:x2+y2=4,直线m:kx-y+1=0.
(1)求证:直线m与圆O有两个相异交点;
(2)设直线m与圆O的两个交点为A、B,求△AOB面积S的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•肇庆一模)(几何证明选讲选做题)
如图所示,已知圆O的半径为2,从圆O外一点A引切线AB和割线AD,C为AD与圆O的交点,圆心O到AD的距离为
3
AB=
15
,则AC的长为
3
3

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•衡阳模拟)如图所示,已知圆O直径AB=
6
,C为圆O上一点,且BC=
2
,过点B的切线交AC延长线于点D,则DA=
3
3

查看答案和解析>>

同步练习册答案