精英家教网 > 高中数学 > 题目详情
11.已知cos(x-$\frac{π}{6}$)=-$\frac{\sqrt{3}}{3}$,则cosx+cos(x-$\frac{π}{3}$)=-1.

分析 由和差角的三角函数公式可得cosx+cos(x-$\frac{π}{3}$)=cosx+$\frac{1}{2}$cosx+$\frac{\sqrt{3}}{2}$sinx=$\sqrt{3}$cos(x-$\frac{π}{6}$),代入已知数据可得.

解答 解:∵cos(x-$\frac{π}{6}$)=-$\frac{\sqrt{3}}{3}$,
∴cosx+cos(x-$\frac{π}{3}$)=cosx+$\frac{1}{2}$cosx+$\frac{\sqrt{3}}{2}$sinx
=$\frac{3}{2}$cosx+$\frac{\sqrt{3}}{2}$sinx=$\sqrt{3}$($\frac{\sqrt{3}}{2}$cosx+$\frac{1}{2}$sinx)
=$\sqrt{3}$cos(x-$\frac{π}{6}$)=-1
故答案为:-1

点评 本题考查两角和与差的三角函数公式,属基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

1.已知椭圆E的中心在原点O,焦点在x轴上,离心率e=$\frac{\sqrt{2}}{2}$,原点O到椭圆E的右顶点与上顶点所在直线的距离为$\frac{2\sqrt{6}}{3}$.
(Ⅰ)求椭圆E的方程;
(Ⅱ)若过椭圆E右焦点F的直线l与椭圆E相交于M,N两点(M,N均在y轴右侧),点A(0,2)、B(0,-2),设A,B,M,N四点构成的四边形的面积为S,求S的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.在(x-y)10的展开式中,x7y3的系数为(  )
A.-120B.120C.-240D.240

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.设f(x)=|lgx|,若函数g(x)=f(x)-ax在区间(0,4)上有三个零点,则实数a的取值范围是(  )
A.$({\frac{lg2}{2},\frac{lge}{e}})$B.$({0,\frac{1}{e}})$C.$({\frac{lg2}{2},e})$D.$({0,\frac{lg2}{2}})$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.执行如图所示的程序框图,则输出的a的值为(  )
A.2B.$\frac{1}{3}$C.-$\frac{1}{2}$D.-3

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.数列{an}的前n项和为Sn,Sn+an=-$\frac{1}{2}{n^2}-\frac{3}{2}$n+1(n∈N*
(1)设bn=an+n,证明:数列{bn}是等比数列;
(2)若${c_n}={({\frac{1}{2}})^n}-{a_n}$,dn=$\sqrt{1+\frac{1}{{{c_n}^2}}+\frac{1}{{{c_{n+1}}^2}}}$,P=d1+d2+d3+…+d2015,求不超过P的最大整数的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.如图,F1、F2分别是椭圆:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>0,b>0)的左右焦点,A是椭圆C的顶点,B是直线AF2与椭圆C的一个交点,∠F1AF2=60°
1)求椭圆C的离心率;
2)已知△AF1B的面积为40$\sqrt{3}$,求椭圆方程.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.设α,β表示平面,m,n表示直线,则m∥α的一个充分不必要条件是(  )
A.α⊥β且m⊥βB.α∩β=n且m∥nC.α∥β且m?βD.m∥n且n∥α

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.求下列函数的值域
(1)$y=2sin(2x-\frac{π}{3})$,$x∈[{\frac{7π}{24},\frac{π}{2}}]$;
(2)$y=\frac{cosx-1}{cosx-2}$.

查看答案和解析>>

同步练习册答案